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Abstract

Herpes simplex virus type-1 (HSV-1) and its closely related type-2 (HSV-2) viruses cause 

important clinical manifestations in humans including acute ocular disease and genital infections. 

These viruses establish latency in the trigeminal ganglionic and dorsal root neurons, respectively. 

Both viruses are widespread among humans and can frequently reactivate from latency causing 

disease. Currently, there are no vaccines available against herpes simplex viral infections. 

However, a number of promising vaccine approaches are being explored in pre-clinical 

investigations with few progressing to early phase clinical trials. Consensus research findings 

suggest that robust humoral and cellular immune responses may partially control the frequency of 

reactivation episodes and reduce clinical symptoms. Live-attenuated viral vaccines have long been 

considered as a viable option for generating robust and protective immune responses against viral 

pathogens. Varicella zoster virus (VZV) belongs to the same alphaherpesvirus subfamily with 

herpes simplex viruses. A live-attenuated VZV vaccine has been extensively used in a prophylactic 

and therapeutic approach to combat primary and recurrent VZV infection indicating that a similar 

vaccine approach may be feasible for HSVs. In this review, we summarize pre-clinical approaches 

to HSV vaccine development and current efforts to test certain vaccine approaches in human 

clinical trials. Also, we discuss the potential advantages of using a safe, live-attenuated HSV-1 

vaccine strain to protect against both HSV-1 and HSV-2 infections.
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Introduction

The alphaherpesviruses

The herpesviridae alphaherpesvirinae subfamily contains the genera Simplexvirus (HSV) 

and Varicellovirus (Varicella Zoster Virus; VZV). Generally, alphaherpesviruses replicate 

rapidly in infected cells causing extensive cytolysis within 24 hours post infection. An 

important property shared by all alphaherpesviruses is their ability to infect neurons 

establishing latency primarily, but not exclusively in sensory ganglionic neurons. Herpes 

simplex virus Type 1 (HSV-1) and Type-2 (HSV-2) cause orofacial cold sores and severe 

ocular disease and blindness, as well as genital ulcers, while varicella-zoster virus (VZV) 

causes chickenpox/shingles in naïve younger individuals and in adult patients with 

weakened immune systems. HSVs are the prototypic viruses of the alphaherpesvirus 

subfamily, which also contains economically important animal viruses including Marek's 

disease-like virus (MDV), bovine herpesvirus type-1 (BHV-1), pseudorabies virus (PRV) 

and others. Alphaherpesviruses, as it is the case with many other viruses, have evolved 

specialized functions to subvert the host immune responses facilitating the establishment of 

latency in sensory neurons. Perturbations of the host immune system can often lead to viral 

reactivation from latency suggesting the presence of an elaborate virally specified system for 

sensing host immune status particularly in the context of immune system interaction with 

neuronal cells.

HSV infectivity

HSV-1 enters neuronal cells via a pH-independent fusion of the viral envelope with neuronal 

plasma membranes, but it can enter a wide range of non-neuronal cells via either pH-

independent or pH-dependent endocytosis (1-3). Initial binding of gD to its cognate 

receptors including nectin-1, HVEM, and other receptors (4-9), are thought to trigger 

sequential conformational changes first in gD and then in gH/gL and ultimately gB that 

results in fusion of the viral envelope with cellular membranes during virus entry, as well as 

fusion among cellular membranes (10-14). Specifically, initial attachment of the virus to 

cellular membranes is mediated by interaction of glycoproteins gB and gC with 

glycosaminoglycan (GAG) moieties of cell surface proteoglycans (15, 16). Subsequently, 

viral glycoprotein gD binds with one or more of its specific receptors, including the 

herpesvirus entry mediator (HVEM or HveA), nectin-1 (HveC), or 3-O-sulfated heparin 

sulfate (5-7). gB can also bind to additional receptors (co-receptors), including paired 

immunoglobulin-like type 2 receptor alpha (PILRα), non-muscle myosin heavy chain IIA 

(NMHC-IIA), and myelin-associated glycoprotein (MAG), that play a pivotal role in virion 

attachment and virus entry (17-19).

Although gB is the sole fusogenic viral glycoprotein mediating membrane fusion of the viral 

envelope with cellular membranes during virus entry, as well as virus-induced cell-to-cell 

fusion that facilitates virus spread, viral glycoproteins gH, gL and gK play accessory roles in 

controlling gB-mediated membrane fusion (13, 20). Virions that lack gK enter into green 

African monkey kidney cells (Vero), albeit with lower efficiency than the wild-type virus 

(21, 22). Deletion of amino acids 31-68 within the amino terminus of gK inhibits virus-

induced cell-to-cell fusion and virus entry without drastically inhibiting virion envelopment 

Stanfield and Kousoulas Page 2

Curr Clin Microbiol Rep. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and egress (20, 22). Of particular interest is gK, which contains determinants that are 

required for successful infection of neuronal axons. Specifically, a recombinant virus lacking 

gK amino acids 31-68 replicated fairly efficiently in all cell types, while it was unable to 

establish latency after ocular infection of mouse eyes (23). Recent experiments have shown 

that the gKΔ31-68 mutation prevents the virus from entering into axonal compartments of 

neurons in cell culture (manuscript, submitted).

After fusion of the viral envelope with the host plasma membrane, the tegumented capsids 

containing the viral genome are released into the cytosol and are transported via the 

microtubular network in a retrograde manner towards the nuclei of infected cells facilitated 

via the dynein-dynactin motor complex, which attaches tegumented capsids to microtubules 

(24-26). The dynein-dynactin motor complex is utilized for the intracellular transport of 

other viruses including vaccinia virus and adenovirus (27-31).

HSV-1 and HSV-2 Pathogenesis

HSV-1 and HSV-2 are closely related viruses with viral genomes exhibiting 83% nucleotide 

identity (32). However, these viruses cause different disease symptoms. HSV-1 causes cold 

sores, herpetic whitlow, encephalitis, herpes ocular infections and keratitis (33-35), and it is 

the leading cause of infectious blindness in the United States (36, 37). HSV-2 is primarily a 

sexually transmitted disease with high global prevalence and disease is primarily restricted 

to the genitals (38). Seroprevalence studies have indicated that 1 of 2 adults in the United 

States ages 14-49 years-old are infected with HSV-1 in a latent state (39). HSV-1 has been 

increasingly identified as the cause of clinical genital herpes infections (40-42). Infected 

individuals typically experience frequent, but asymptomatic viral reactivation from latency 

resulting in virus shedding that contributes to high transmission rates (43-45). Both HSV-1 

and HSV-2 produce persistent lifelong infections by establishing latency in immune 

privileged sensory neurons (46). Herpes infections can carry significant social implications, 

and the economic costs associated with genital herpes is substantial (projected to be around 

$2.5 billion in 2015 and around $3 billion in 2025) (47). Importantly, genital HSV infection 

is considered a risk factor for acquiring human immunodeficiency virus infection (48-56), 

and in some geographical areas HSV-2 infection may be a contributing factor to 30-50% of 

new HIV infections (57, 58). A successful vaccination strategy against HSV-2 infection is 

predicted to have a dramatic global impact on HIV spread, prevention of genital clinical 

disease and neonatal infections (59-61).

Immune Responses

Prior HSV infection appears to partially protect against re-infections and may decrease 

clinical disease symptoms including frequency of viral reactivation (43, 62). Primary 

infection can induce strong humoral and cellular immune responses that contribute to 

controlling subsequent infections. The production of neutralizing antibodies is thought to 

play an important role in limiting virus spread (63-65). However, adapted cellular immune 

responses exerted at mucosal sites of viral infection (ocular, genital) are crucial in 

controlling HSV infections, as well as reactivation of the virus from latently-infected 

ganglionic neurons (66-72).
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Innate immune responses

Virion particles are initially detected by pattern recognition receptors (PRR) that recognize 

pathogen-associated molecular patterns (PAMP) including viral antigens, and viral DNA and 

RNA. As is the case with many infectious agents, innate immune responses mediated by 

macrophages, neutrophils and other innate immune cells confer immediate nonspecific 

protection against HSV-2 (73). Moreover, elicitation of the appropriate innate immune 

response may be required for the induction of downstream humoral and cellular immune 

responses. Glycoprotein gB binds Toll-like receptor-2 (TLR-2) and alters downstream 

signaling, which may be used for immune evasion purposes (74). Other Toll-like receptors 

including TLR9 (75), TLR3 (76), and TLR5 (77) appear to be involved in the immune 

response against HSVs.

Humoral immune responses

Although pre-clinical studies have indicated that strong humoral responses may limit viral 

spread and disease symptoms, experimental infections in animals have also shown that B 

cells were dispensable with relation to clearance of HSV-2 infection (78) and human clinical 

trials of certain vaccines have failed despite the generation of strong humoral responses 

against the virus (79, 80). Other experiments have shown humoral responses may contribute 

to disease protection (63, 81-84). A replication defective HSV-2 lacking gD2 was able to 

protect mice against lethal genital HSV-2 challenge. This vaccine produced very weak 

neutralizing antibodies against the challenging virus however serum from vaccinated 

animals was able to passively protect naïve mice from challenge. The serum displayed 

potent antibody dependent cellular cytotoxicity properties targeting antigens other than gD2 

(85). Collectively, it is highly probable that humoral responses play a significant role 

limiting HSV viral infections and associated clinical symptoms.

Cellular immune responses

Extensive work in experimental animals has provided strong evidence that induction of both 

HSV-specific CD4+ T cells and CD8+ T cells are required for maximum protection (78, 86). 

Data from subsequent studies indicate that CD8+ tissue resident T cells may protect against 

HSV-2 reactivated virus in human peripheral tissues (87). The importance of tissue-specific 

memory immune responses is underscored in a recent study that has utilized a “prime-pull” 

immunogenicity approach consisting of initial parenteral vaccination to induce systemic T 

cell response followed by intravaginal chemokine application to enhance recruitment of 

activated T cells to genital tissues (88). Several studies have also implicated the involvement 

of regulatory T cells (Tregs) in the control of HSV-2 infections, since in Treg-deprived mice, 

dendritic and T cells appeared to migrate more slowly into infected tissues and interferon 

levels were lower in the draining lymph nodes (75).

Vaccine Approaches

Many vaccine approaches and candidate vaccines have been tested in laboratory animals and 

humans including purified peptides, recombinant glycoprotein subunits, inactivated, live 

attenuated, replication competent and replication defective whole virus, as well as DNA-

based vaccines administered via different routes of immunization (reviewed in: (60, 89-94)). 
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A detailed chronological listing of published papers during the last five years is provided in 

Table 1 and certain distinct vaccine approaches are described below.

Subunit and peptide vaccines

Subunit vaccines are the most studied HSV-2 vaccines; however, to date, none have 

conferred protective immune responses against HSV-2 infections in clinical trials (137). 

Viral glycoproteins gB and gD that can elicit both humoral and cellular immune responses 

have been favored as subunit vaccines. A gD2 subunit vaccine with an alum/MPL adjuvant 

reduced HSV-2 disease in HSV-2-seronegative women, but had no apparent benefit against 

genital herpes in men and HSV-1-seropositive women (138). A subsequent double-blind 

controlled, randomized efficacy field trial of a HSV-2 glycoprotein D (gD-2) subunit vaccine 

(Herpevac Trial) in 8323 women, showed that the vaccine was 82% protective against 

HSV-1 genital disease, but offered no significant protection against HSV-2 genital disease 

(80). Antiviral protection correlated with induction of neutralizing antibody against gD-2, 

while cellular immune responses did not appear to play an important role in conferring 

protection (139, 140). Newer vaccine approaches utilize libraries of B and T cell epitope 

peptides in conjunction with newer adjuvant formulations that are specifically targeted to 

elicit strong humoral and cellular immune responses. An example of this approach is the use 

of T cell epitopes derived from the ICP4 protein and antibody generated by the gD2 

glycoprotein in conjunction with the proprietary adjuvant Matrix-M (Reviewed in (90)(Table 

2 GEN-003). Recently, it was recognized that T cells from symptomatic and asymptomatic 

patients target different epitopes leading to the hypothesis that elicitation of the appropriate 

B and T cell responses may provide protection (141). A vaccine approach based on this 

principle (HerpV) generated CD4+ and CD8+ T cell responses in mice and in HSV-2 

seropositive human patients (142, 143)(Table 2).

DNA and viral vectored vaccines

DNA vaccines vectors expressing gD2 and gB2 genes have shown ability to elicit protective 

immune responses in pre-clinical studies. A DNA-based gD2 vaccine has been shown to 

elicit cellular immune responses in a double-blind, vehicle-controlled, dose escalation safety 

and immunogenicity trial (144). However, it is unlikely that this type of vaccine approach 

will find wide use, since typically multiple vaccinations are needed over a prolonged period 

of time to elicit significant immune responses. HSV viral antigens also have been expressed 

via a variety of viral vectors including adenoviruses and vaccinia virus that can induce 

strong adjuvant-like responses in experimental animals and humans. Specifically, the 

modified vaccinia virus Ankara (MVA) has been used to express HSV-2 gD inducing strong 

cellular and humoral immunity (145).

Live-attenuated virus vaccines

In principle, live attenuated vaccines have distinct advantages over subunit and inactivated 

vaccines, primarily because replication of the pathogen allows for the entire repertoire of 

pathogen-specific antigen expression. Given the 83% nucleotide identity shared by both 

HSV-1 and HSV-2 genomes (32), cross protective immunity may be achieved by a single 

safe and efficacious vaccine expressing a large enough repertoire of cross-protective 

antigens. Attempts at generating a live attenuated HSV vaccine have focused on the 
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preparation of attenuated viruses that can generate robust immune responses, while 

minimizing potential virulence in the host. Generally, entire genes that play important roles 

in the virus lifecycle have been deleted or otherwise modified to attenuate the virus and 

allow a more robust production of humoral and cellular immune responses. Viral genome 

modifications include deletions in glycoprotein E (gE) (119, 146), multiple deletions in 

γ34.5, UL55-56, UL43.5, US10-12 (147), UL5, UL29, UL41, ICP27 genes (148-151), 

deletion of ICP0- (129, 135) and the UL9 gene (152-155), and deletion of gD (85). Other 

live virus vaccines under study include the HSV-1 virus CJ9-gD engineered to overexpress 

gD1 and having a dominant negative mutation to prevent virus replication. This vaccine 

strain has been reported to protect guinea pigs from HSV-2 intravaginal challenge, with 

marked reduction in vital titer and lesion formation (154). These vaccine approaches face 

two major hurdles that need to be overcome before they can be successfully applied to 

human patients: 1) Replication defective viruses typically require growing the virus in a 

complementing cell line adding to the complexity of producing the vaccine, as well as 

associated safety and regulatory issues associated with the validation of the cell line that is 

used to grow the virus; 2) All viruses, regardless of the specific gene deletions, are capable 

of entering into neurons and may establish latency, as well as potentially recombine with 

endogenous HSVs. To circumvent this potential safety issue, a recombinant virus carrying 

specific mutations in gD2 that prevent the virus for binding to its neuronal receptor nectin-1 

was recently constructed and shown to protect mice against HSV-2 infection, while the 

vaccine virus did not enter into ganglionic neurons (116). However, these single amino acid 

changes in gD can revert in vivo to produce a wild-type-like virus with pathogenic potential.

Initial experiments with live-attenuated vaccination of human patients with a HSV-2 mutant 

virus, which is deleted in the PK domain of the large subunit of ribonucleotide reductase 

(ICP10DeltaPK)(156) revealed only a fraction of the vaccinated individuals were 

significantly protected against viral reactivation and subsequent clinical symptoms (157). 

Similarly, a virus having the gH gene deleted revealed no significant benefit against HSV-2 

infection in immunocompetent men and women (158). A current clinical trials involves the 

testing of replication-defective HSV529, a vaccine version derived from mutant virus dl5-29 

virus having the UL29 (ICP8) and UL5 (component of the viral helicase-primase), which 

has been shown to induce protective immune responses in mice and guinea pigs (97, 134). 

However, deletion of the UL29 and UL5 genes will not prevent virus entry into neurons and 

establishment of latency. Current clinical trials with various vaccine approaches are listed in 

Table 2.

Generation of a safe and effective replication competent HSV-1 virus is important to not 

only vaccinate against acquiring HSV infection and reduce HIV prevalence, but also a safe 

vaccine vector could be utilized for expression of heterologous antigens from other 

pathogens. HSV has many non-essential genes and can stably carry large fragments of 

foreign DNA. This genetic flexibility is ideal for the expression of antigens specific to other 

pathogens (159, 160). The recombinant HSV-1 Talimogene Laherparepvec (Amgen, Inc.) 

expressing granulocyte monocyte colony stimulating factor (GM-CSF), a potent chemokine 

functioning in the maturation of macrophages, has been used in combination with other 

chemotherapeutics for the treatment of squamous cell cancer of the head and neck with 

promising phase I/II results (161). In addition this vaccine improved durable response rate in 
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patients with advanced melanoma in a phase III clinical trial (162). FDA approval of 

Talimogene Laherparepvec for melanoma therapy is expected to pave the way for the use of 

live-attenuated HSV-based vectors for vaccination against HSV and other pathogens.

Lessons learned from the live-attenuated VZV vaccine strain

The VZV alphaherpesvirus causes varicella (chickenpox) during primary infections followed 

by establishment of latency in dorsal ganglionic neurons. Reactivation of the virus causes 

herpes zoster (HZ), commonly referred to as shingles. The currently used Oka vaccine strain 

of VZV was isolated from a healthy Japanese child with varicella and attenuated by serial 

passage in cell culture. The vaccine was initially tested for a number of years in Japan and 

later gained FDA approval for use in Europe and the United States. The vaccine has been 

proven to be safe and provide significant clinical efficacy in immunocompetent individuals, 

while it was shown to boost VZV-specific cell-mediated immune responses in both 

immunocompetent and immunocompromised adults. Routine childhood immunization has 

markedly reduced the incidence of varicella in the United States (163-166).

Development of the HSV-1 VC2 vaccine strain

Previously, we have shown that a HSV-1 gK-null virus was unable to infect ganglionic 

neurons and establish latency after ocular infection of mice (167, 168). Recently, we 

capitalized on the attenuated properties of the gK-null virus and showed that intramuscular 

vaccination of mice with the gK-null virus conferred significant cellular immune responses 

and protection against intravaginal challenge of mice with either virulent HSV-1(McKrae) or 

HSV-2(G) viruses (169). To further improve on this vaccination approach, we constructed 

the VC2 mutant virus with specific deletions within the genes coding for glycoprotein K 

(gK) and UL20. The VC2 virus contains the gKΔ31-68 mutation that prevents the virus from 

infecting ganglionic neurons after ocular infection in mice (170). In contrast to the gK-null 

virus that requires replication in the complementing cell line VK302 that expresses gK, the 

VC2 virus can replicate efficiently in infected Vero cells achieving titers similar to that of 

the wild-type HSV-1(F) parental virus in cell culture (107, 113). A single intramuscular 

vaccination with the VC2 virus was very well tolerated at a high infectious dose (107 PFU), 

produced a robust humoral and cell-mediated immune response and conferred 100% 

protection against lethal intravaginal challenge with either HSV-1 (McKrae) or HSV-2 (G) 

viruses (107).

Amelioration of herpetic eye disease can be augmented either prophylactically or 

therapeutically by a robust anti HSV immune response (95, 96, 110, 121-123)(Table 1). 

Specifically an asymptomatic individual's immune system recognizes a different repertoire 

of HSV antigens than those of a symptomatic individual (171-173). Alteration of these 

antigenic recognition patterns within target HSV proteins must be induced during the 

primary insult of infection. VC2 exhibits distinctly different innate recognition when 

compared to the parental virus HSV-1 (F) strain and can protect against lethal ocular 

infection of mice suggesting that gK is involved in immune evasion (unpublished). This 

altered innate recognition of the VC2 virus may serve as the stimulus for significantly 

altered epitope recognition in the downstream adaptive immune response resulting in 

enhanced immune responses against HSV-1 and HSV-2 ocular and genital infections.
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Conclusions

Based on the successful deployment of the VZV live-attenuated vaccine, it is likely that a 

similar approach could be used to produce an efficacious live-attenuated HSV vaccine 

provided that safety concerns are resolved. Preclinical results with the VC2 vaccine are 

particularly encouraging. The VC2 vaccine, unlike other live-attenuated viral strains cannot 

enter into neuronal axons and elicits stronger humoral and cellular immune responses than 

its parental HSV-1 (F) strain indicating that the specific modification of the VC2 gK and 

UL20 proteins alter the canonical signaling pathways that ultimately produce robust humoral 

and cellular immune responses. Understanding immune evasion mechanisms mediated by 

gK and UL20 in conjunction with other viral glycoproteins may provide improved versions 

of the VC2 vaccine strain that can elicit strong, tissue-specific protective B and T cell 

responses. Also, VC2 coulddf serve as a vector platform for the production of vaccines 

against other viral and bacterial infections.
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Table 1

Past 5 Years of Preclinical HSV Vaccine Development

Type Description Adjuvant Animal Model Route Of challenge Year Reference

Epitope gD253-61, gD270-78 and gD2278-286, 
gD2287-317

N-palmitoyl-lysine Rabbit Ocular 2015 (95)

Epitope HSV-1 VP11/1266-74, VP11/12220-228, 
VP11/12702-710

CpG Mouse Ocular 2015 (96)

Replication-Defective HSV-2 DeltagD(-/+gD1) NA Mouse Genital 2015 (85)

Replication-Defective HSV-2 HSV529 NA Guinea Pig/Mouse Genital 2015 (97)

Live-Attenuated HSV-2 ICP0(-) virus, 0DeltaNLS NA Mouse Genital 2015 (98)

Recombinant Virus HPV-gBsec, HPV-gDsec, HPV-gBsec/gDsec NA Mouse Genital 2015 (99)

Live-Attenuated HSV-1 KOS-63 NA Mouse Ocular 2014 (100)

Live-Attenuated HSV-1 HSV-CD80 NA Mouse NA 2014 (101)

Subunit gG2 CpG/Alum Mouse Genital 2014 (102)

Subunit gD2, gD2/gC2 CpG/Alum, MPL/Alum Guinea Pig Genital 2014 (103)

Subunit gD2, gE2/gC2/gD2 CpG/Alum Mouse Genital 2014 (104)

Replication-Defective HSV-2 CJ2-gD2 NA Guinea Pig Genital 2014 (105)

Live-Attenuated HSV-2 UL24 mutant NA Guinea Pig/Mouse Genital 2014 (106)

Live-Attenuated HSV-1 VC2 NA Mouse Genital 2014 (107)

Live-Attenuated HSV-1 encoding the HIV-1 Tat NA Mouse Genital 2014 (108)

Live-Attenuated HSV-2 TK(-) NA Mouse Genital 2014 (109)

Epitope gB1342-350 gB1561-569, gB1183-191 gB1441-449 CpG Mouse Ocular 2013 (110)

DNA pIRES I and pIRES II NA Mouse Nasal 2013 (111)

Other DC/HSV-1 NA Mouse IP, Ear 2013 (112)

Replication-Defective HSV-1 Δ gK NA Mouse Genital 2013 (113)

Live-Attenuated wild-type HSV-2, HSV-2 ICP0 (-) viruses 
(0Delta254, 0Delta810, 0DeltaRING, or 
0DeltaNLS)

NA Guinea Pig Genital 2013 (82)

DNA ubiquitinated and non-ubiquitinated 
constructs encoding gD

NA Mouse Genital 2013 (114)

Other DTK-NISV, gB1s-NISV NA Mouse Genital 2013 (115)

Live-Attenuated HSV2-gD27 NA Mouse NA 2012 (116)

Subunit gD2 IC31((R)) Mouse Genital 2012 (117)

Replication-Defective HSV-2 ACAM529 NA Mouse Genital 2012 (118)

Live-Attenuated HSV-2 gE2-del NA Guinea Pig/Mouse Genital 2012 (119)

Recombinant Virus Lipo/rAdv5 NA Mouse Genital 2012 (120)

Replication-Defective HSV-1 ICP8(-)vhs(-) and ICP8(-)vhs(-)B7 NA Mouse Ocular 2011 (121)

DNA pRSC-gD-IL-21 NA Mouse Ocular 2011 (122)

DNA pRSC-gD-IL-21 NA Mouse Ocular 2011 (123)

DNA pcgB, pcEpitope NA Mouse NA 2011 (124)

Subunit gD2, truncated gD2t, gD2/gB2/gH2/gL2, 
gB2/gH2/gL2

CLDC Guinea Pig Genital 2011 (125)
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Type Description Adjuvant Animal Model Route Of challenge Year Reference

Subunit gD2, gB2, gD2/gB2 CpG/Alum Guinea Pig/Mouse Genital 2011 (126)

Subunit gC2/gD2 CpG/Alum Guinea Pig/Mouse Genital 2011 (127)

Epitope gB2466-473,gC2216-223,gD26-18,gE2483-491, 
gG2572-579, gI2286-295, gD221-28, gB2162-177, 
gD2205-224, gD2245-259, gD210-20, gD2268-276

Freund's adjuvant Mouse Genital 2011 (128)

Live-Attenuated HSV-2 ICP0(-) virus, 0DeltaNLS NA Mouse Genital 2011 (129)

DNA gD DNA vaccine NA Mouse Genital 2011 (130)

DNA pVAX-FI-HSV2 NA Guinea Pig Genital 2011 (131)

Other pcDNA3-gD phagemid partiles NA Mouse NA 2010 (132)

Subunit gD2 CLDC, MPL/Alum Guinea Pig Genital 2010 (133)

Replication-Defective HSV-2 dl5-29, dl5-29-41, dl5-29-41.1 NA Mouse Genital 2010 (134)

Live-Attenuated wild-type HSV-2, HSV-2 ICP0 (-) viruses 
(0Delta254, 0Delta810, 0DeltaRING, or 
0DeltaNLS)

NA Mouse Genital 2010 (135)

DNA Nanopatch + DNA vaccine NA Mouse Genital 2010 (136)
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Table 2

Current Clinical Trials of HSV Vaccines

Intervention Company Trial Info ClinicalTrials.gov Identifyer:

Replication-defective HSV529 Sanofi Pasteur Ongoing Phase 1 The trial, being conducted at 
the National Institutes of 
Health Clinical Center, is 
utilizing healthy adults age 18- 
40 years of age and consist of 
3 vaccination visits with 7 
follow up visits. Participants 
will be screened with a 
medical history and physical 
exam. The study has an 
estimated completion date of 
January 2030.

NCT01915212

HerpV polyvalent peptide 
complex adjuvanted with QS-21

Agenus Completed phase 2 Enrolled a total of 80 subjects 
age 18 Years to 50 Years with 
a history of 1-9 herpes 
episodes within the prior 12 
month period. Treatment 
consisted of 3 injections of 
HerpV at a dose of 240 μg in 2 
week intervals. Results 
published in a press release 
showed that vaccination with 
HerpV demonstrated a 
significant reduction in viral 
shedding (P=0.015; RR=0.85). 
These results suggest a 15% 
reduction in viral shedding and 
a 34% reduction in viral load 
(P=0.08).

NCT01687595

GEN-003 is a subunit vaccine 
comprised of HSV-2 
glycoprotein D2 
(gD2ΔTMR340-363) and infected 
cell polypeptide 4 (ICP4383-766) 
adjuvanted with proprietary 
Matrix-M2

Genocea Ongoing phase 2 Press release of results from 
the phase 1/2a clinical trial 
demonstrated that during a 28 
day observation period 6 
months after administration of 
GEN-003 patients that 
received 30 μg doses presented 
a 65% reduction in genital 
lesion occurrence, significantly 
less than baseline (p<0.001). 
Observations collected again 
12 months after vaccination 
demonstrated a 42% reduction 
on lesion formation and 
significantly elevated humoral 
and cellular immune 
responses. The Phase 2 study 
consists of 310 subjects from 
17 institutions in the United 
States. Top-line results 
identified an optimal dose of 
60 μg per protein / 75 μg of 
Matrix-M2 adjuvant 
demonstrated a highly 
statistically significant (p < 
0.0001) 55 percent reduction 
from baseline in the viral 
shedding rate, the primary 
endpoint of the trial and a 
measure of anti-viral activity.

NCT02114060

VCL-HB01 Plasmid based 
vaccine encoding two HSV-2 
proteins and VCL-HM01 
Plasmid based vaccine encoding 
one HSV-2 protein, both 
adjuvanted with Vaxfectin

Vical Ongoing phase 1/ 
phase 2

A press release has stated that 
Vical has completed 
enrollment in it clinical study 
and the randomized, double-
blind, placebo-controlled trial 
will evaluate safety, 
tolerability and efficacy of two 

NCT02030301
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Intervention Company Trial Info ClinicalTrials.gov Identifyer:

vaccine candidates (one 
encoding glycoprotein D alone 
and the other in combination 
with UL46). The study is 
powered to show at least a 
30% decrease in the viral 
shedding rate following 3 
doses of vaccine. A total of 
165 otherwise healthy HSV-2- 
infected patients aged 18 to 50 
years were enrolled across 
seven U.S. trial sites. The 
Company expects to release 
efficacy data by the middle of 
2015.
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