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Abstract

Glycoprotein D (gD-2) is the entry receptor of herpes simplex virus 2 (HSV-2), and is the immunogen in the pharmaceutical
industry’s lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing
for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials.
Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP02 virus would elicit better
protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant
(alum+monophosphoryl lipid A) produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant
resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-
type HSV-2 (MS strain). In contrast, 114 of 115 mice immunized with a live HSV-2 ICP02 virus, 0DNLS, survived the same HSV-
2 MS challenges. Likewise, 0DNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina
relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to
establish a detectable infection in 0DNLS-immunized mice, whereas the same virus readily infected naı̈ve and gD-2-
immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it
contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein.
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Introduction

Infections with herpes simplex virus 2 (HSV-2) are exceedingly

common; ,1 billion people serve as carriers of HSV-2 and ,20

million people acquire new HSV-2 infections each year [1]. An

effective HSV-2 vaccine would be useful in breaking the cycle, and

protecting young adults from the 1 in 10 chance that they will

acquire HSV-2 before they marry [2,3,4].

Efforts to develop an HSV-2 vaccine have long been predicated

on the assumption that a live-attenuated HSV-2 virus would be

too dangerous to use as a human vaccine. Thus, four types of

vaccines have been most carefully considered: 1. HSV-2 subunit

vaccines [5,6,7,8,9,10]; 2. gene-delivery vehicles that express

HSV-2 proteins [11,12,13,14,15,16,17,18,19]; 3. replication-

defective HSV-2 viruses [20,21,22,23,24,25]; and 4. HSV-2

viruses that are overattenuated and/or unable to replicate in

neurons [26,27,28,29,30,31].

Of these approaches, subunit vaccines based on a combination of

HSV-2 glycoprotein D (gD-2) and a potent adjuvant have received

the greatest level of consideration. The technology to produce

recombinant gD-2 emerged in the early 1980s [32], and the

formulation of gD-2 subunit vaccines has undergone a continual

process of testing and refinement ever since [6,7,11,19,33,34,

35,36,37,38,39,40,41]. Mouse and guinea pig studies have, and

continue, to serve as a testing ground for identifying the optimum

combination of gD-2 immunogen and adjuvant [6,37,38,42]. Two

clinical trials of gD-2 subunit vaccines were completed in the late

1990s and early 2000s [36,41]. In the latter trial, it was noted that

HSV-1 seronegative women responded to a gD-2 subunit vaccine

with significant reductions in the rate of acquiring HSV-2 genital

herpes [36]. These results offered hope that vaccine-induced

protection against HSV-2 genital herpes was possible, but would

need to be further improved.

Mature gD-2 is a 368-amino-acid protein with a hydrophobic

C-terminus. In nature, the gD-2 protein is embedded in the

envelope of HSV-2 virions, and initiates viral entry by attaching to

cell-surface receptors [43]. The recombinant gD-2 protein used in

vaccines lacks the C-terminus, which allows the truncated protein

to be secreted by producer cells [34,35]. Hence, a 302-amino-acid

gD-2 peptide (gD-2302t) is secreted from plasmid-transfected

chinese hamster ovary cells [35], and it has served as the

immunogen in human gD-2 subunit vaccines [36,37,38]. Likewise,

a 306-amino-acid gD-2 peptide (gD-2306t) is secreted from

baculovirus-infected insect cells [34] and exhibits similar immu-
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nogenic properties to gD-2302t in animal studies [6]. Thus, the

protein antigen used in gD-2 subunit vaccines has remained

relatively constant over time.

The second critical component of a subunit vaccine is the

adjuvant, which has repeatedly changed in gD-2 subunit vaccine

formulations over the years. In its most recent formulation

[6,37,38], gD-2 subunit vaccines relied on Glaxo Smith Kline’s

‘‘adjuvant system 4’’ (AS04) [44], which means that gD-2 was

absorbed to alum adjuvant and combined with monophosphoryl

lipid A (MPL). MPL is derived from Salmonella minnesota, and

contains a non-toxic analogue of lipid A (a toll-like receptor 4

agonist), which potently activates professional antigen-presenting

cells [45,46]. Hence, MPL drives more potent immune responses

to protein antigens, and was instrumental in the success of the

GardasilH vaccine [47].

Given the acute need for a genital herpes vaccine, the National

Institutes of Allergy and Infectious Disease (NIAID) invested $27.6

million into a gD-2 clinical trial that was conducted from 2003 to

2009 at 48 test sites in the United States [48]. The goal was to

determine if the latest gD-2 subunit vaccine, Glaxo Smith Kline’s

Herpevac/SimpilirixTM vaccine (gD-2+alum+MPL), would pre-

vent genital herpes in HSV-1 seronegative women. On September

30, 2010, the disappointing results were announced; immunization

with a gD-2 subunit vaccine did not reduce the rate at which

women acquired HSV-2 genital herpes [49]. These results have

left many of the world’s foremost experts questioning how an

immunogen as potent as the gD-2 subunit vaccine could fail to

prevent genital herpes [48].

Theoretical considerations suggest that a gD-2 subunit vaccine

may not elicit the maximum protection against HSV-2 that is

attainable. Ideally, a HSV-2 vaccine would drive clonal expansion

of a broad repertoire of HSV-2-specific B and T cells, and this

diverse subpopulation of lymphocytes would confer complete

resistance to HSV-2 infection. Given that gD-2 is only 1 of 80

HSV-2 proteins, it is unlikely that immunization with gD-2 may

drive clonal expansion of the body’s full repertoire of HSV-2-

specific B and T cells. Thus, we have questioned whether a live-

attenuated HSV-2 virus would better prepare the body’s immune

system to resist HSV-2 infection [50].

Earlier studies of HSV-1 ICP02 mutant viruses led us to propose

that mutagenesis of HSV-2’s ICP0 gene might yield viruses that

were interferon-sensitive, avirulent, and suitable for use as a live

HSV-2 vaccine strain [50,51]. We have recently corroborated the

validity of these predictions, and identified a tenable HSV-2

ICP02 vaccine strain, HSV-2 0DNLS [52].

Using this novel reagent, the current study was initiated to

determine if mice immunized with the live HSV-2 0DNLS virus were

more resistant to HSV-2 genital herpes than mice immunized with a

gD-2 subunit vaccine. Consistent with previous reports [6,37,38],

mice immunized with gD-2306t, alum, and MPL mounted a very high

antibody response against gD-2. However, only 3 of 45 gD-2-

immunized mice survived vaginal or ocular challenge with an

overwhelming dose of wild-type HSV-2 MS strain. In contrast, nearly

100% of mice immunized with the HSV-2 ICP02 virus, 0DNLS,

survived the same rigorous challenges. Importantly, 0DNLS-

immunized mice were as resistant to superinfection with wild-type

HSV-2 as mice that recovered from a primary infection with wild-

type HSV-2. We present three lines of evidence that mice immunized

with the 0DNLS virus were 10 to 100 times better protected against

HSV-2 genital herpes than mice immunized with a gD-2 subunit

vaccine, similar in composition to the SimpilirixTM vaccine [48,49].

These results suggest that a HSV-2 vaccine might be more likely to

prevent genital herpes if it contained a live-attenuated HSV-2 virus

rather than a single HSV-2 protein [41,48,53].

Results

HSV-2 0DNLS is avirulent and immunogenic
HSV-2 0DNLS is a live-attenuated virus that is avirulent in mice

following inoculation of the eyes [52]. A test was conducted to

determine if HSV-2 0DNLS was avirulent and immunogenic when

administered to mice by mucosal or subcutaneous routes of

vaccination; namely, the nostrils (mucosal route), rear footpads

(subcutaneous route), or vagina (mucosal route). Wild-type HSV-2

MS (ICP0+) virus was included as a control to verify that the

0DNLS mutation was necessary to attenuate the pathogenesis of

HSV-2 infection.

Groups of n = 10 female ICR mice were inoculated with HSV-2

MS or HSV-2 0DNLS by the following routes: i. 100,000 pfu per

eye; ii. 125,000 pfu per nostril; iii. 500,000 pfu per vagina; or iv.
1,250,000 pfu per rear footpad. Ocular and vaginal swabs

confirmed that HSV-2 MS and 0DNLS consistently replicated in

mice (Fig. S1). HSV-2 MS produced fatal encephalitis in 100% of

mice inoculated in the eyes between Days 6 and 7 post-inoculation

(p.i.), and all intranasally-inoculated mice succumbed by Day 9 p.i.

(Fig. 1A). HSV-2 0DNLS did not produce any overt disease that

was evident upon visual inspection of mice inoculated in the eyes

or nostrils (Fig. 1B). HSV-2 MS inoculation of the vagina of

medoxyprogesterone-treated mice produced lethal disease be-

tween Days 8 and 12 p.i., and death coincided with the onset of

hindlimb paralysis (Fig. 1A). HSV-2 0DNLS did not produce any

overt disease in mice inoculated vaginally (Fig. 1B). Mice

inoculated with HSV-2 MS in the rear footpads were slow to

develop lethal disease, and 50% survived until Day 60 p.i. (Fig. 1A).

HSV-2 0DNLS did not produce any overt disease in mice

inoculated in the rear footpads (Fig. 1B). Thus, the 0DNLS

mutation in the ICP0 gene allowed a mild HSV-2 infection to be

established in ICR mice that did not produce any overt symptoms

of disease following inoculation of the eyes, nose, vagina, or

footpads. However, histological analysis was not performed on

HSV-2 0DNLS-infected tissues, and we cannot exclude the

possibility that HSV-2 0DNLS infection caused pathological

changes that were not visible upon gross examination of

0DNLS-inoculated mice.

HSV-specific IgG antibody levels were compared amongst

0DNLS-inoculated mice and mice surviving footpad inoculation

with HSV-2 MS. Mice were bled on Day 50 p.i., and sera were

tested for the presence of gD-2-specific IgG antibody [34]. MS-

footpad-inoculated mice possessed gD-2 antibody levels that were

an average 100-fold above the background of ELISA (Fig. 1C). All

HSV-2 0DNLS-immunized mice possessed gD-2 antibody levels

that were 25- to 32-fold above background (Fig. 1C). Thus,

regardless of whether mice were inoculated in the eyes, nose, feet,

or vagina, immunization with the live-attenuated HSV-2 0DNLS

virus elicited a significant IgG antibody response directed against

HSV-2’s entry receptor, gD-2.

HSV-2 0DNLS-immunized mice acquire immunity to wild-
type HSV-2

On Day 56 p.i., protective immunity was assessed in the MS-

and 0DNLS-immunized mice described above. In this and all

vaginal challenges, a robust HSV-2 infection was established by 1.
treating mice with 2 mg medoxyprogesterone 7 and 3 days prior

to challenge [54,55], and by 2. inoculating mice with 500,000 pfu

per vagina of wild-type HSV-2 MS. On Days 2, 4, and 6 post-

challenge, naı̈ve mice shed an average 7900, 1300, and 900 pfu

per vagina, respectively (X symbols in Figs. 2A, 2B). In contrast,

MS-footpad-immunized mice did not shed detectable levels of

HSV-2 challenge virus from their vaginas on Days 2, 4, or 6 post-

Live vs Dubunit HSV-2 Vaccine
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challenge (X symbols in Fig. 2A). Likewise, 0DNLS-footpad-

immunized mice shed an average 30- and 220-fold less HSV-2

challenge virus than naı̈ve mice on Days 2 and 4 (e symbols in

Fig. 2A). On Days 4 and 6 post-challenge, shedding of HSV-2 per

vagina was reduced by .100-fold in all 0DNLS-immunized mice

relative to naı̈ve controls, regardless of the specific route of

immunization (Fig. 2A, 2B). Likewise, all 0DNLS-immunized mice

survived HSV-2 vaginal challenge regardless of the route of

immunization, whereas 0 of 10 naı̈ve mice survived HSV-2

vaginal challenge (Fig. 2C).

Mice immunized with HSV-2 0DNLS were also challenged on

Day 56 with 100,000 pfu per eye of wild-type HSV-2 (Fig. S2).

Consistent with the results of vaginal challenge, 0DNLS-immu-

nized mice shed significantly less HSV-2 challenge virus per eye

than naı̈ve mice on Days 1 and 2 (Fig. S2A, S2B). Likewise, while

0 of 10 naı̈ve mice survived HSV-2 MS challenge of the eyes, all

0DNLS-immunized mice survived ocular HSV-2 challenge

regardless of the route of 0DNLS immunization (Fig. S2C).

Therefore, mice immunized with HSV-2 0DNLS possessed potent

and systemic protection against wild-type HSV-2.

Footpad immunization with HSV-2 0DNLS versus a gD-2
subunit vaccine

The efficacy of HSV-2 0DNLS-induced protection against

genital herpes was compared to a gD-2 subunit vaccine, similar in

composition to Glaxo Smith Kline’s SimpilirixTM vaccine

[6,38,48]. Groups of n = 40 mice were immunized on Day 0 in

their right, rear footpads with: 1. 2.5 mg gD-2, alum, and 10 mg

monophosphoryl lipid A (MPL); 2. 2.5 mg GFP control antigen,

alum, and 10 mg MPL; 3. culture medium (vehicle); 4. 16106 pfu

of HSV-2 0DNLS; or 5. 16106 pfu of wild-type HSV-2 MS

(Fig. 3A). Mice inoculated in their rear footpads with wild-type

HSV-2 MS were given 1 mg per ml acyclovir (ACV) in their

drinking water between Days 21 and +20 p.i. to limit the

pathogenesis of the primary infection. Consequently, 100% of

ACV-treated mice survived HSV-2 MS inoculation of the right,

rear footpad (Fig. 3A).

Replication of HSV-2 MS or 0DNLS in the footpads of vaccine

recipients was verified in parallel groups of mice, as follows. In the

absence of ACV, HSV-2 MS replicated to peak titers of 1,000 to

10,000 pfu per footpad on Days 1 and 2 p.i., and viral replication

was low to undetectable thereafter (Fig. 3B). HSV-2 0DNLS

Figure 1. HSV-2 0DNLS is avirulent and immunogenic in female
ICR mice. Duration of survival following inoculation of naı̈ve mice with
culture medium containing 25,000 pfu per ml of (A) HSV-2 MS or (B)
HSV-2 0DNLS following placement of 4 ml on left and right scarified
eyes; 5 ml in left and right nostrils; 50 ml in left and right, rear footpads;
or 20 ml instilled into the vaginal vault (n = 10 mice per group). A single
asterisk (*) denotes a probability, p, ,0.05 and a double asterisk (**)
denotes p,0.001 that matched pairs of mice inoculated with (A) HSV-2
MS or (B) HSV-2 0DNLS survived at equivalent frequencies, as calculated
by Fisher’s Exact Test. (C) Mean 6 sem abundance of gD-2 specific IgG
antibody in mouse serum on Day 50 p.i., as determined by ELISA on
1:100 dilutions of mouse serum (n = 10 per 0DNLS-immunization group;
n = 5 MS-immunized mice). The y-axis represents relative units of IgG
abundance expressed as ‘‘fold-increase above background,’’ as deter-
mined relative to a 0.33-log dilution series of high titer anti-HSV-2
antiserum that provided the standard curve that defined the
quantitative relationship between anti-gD-2 IgG antibody abundance
and the colorimetric development in each well of the ELISA plate (i.e.,
the standard curve had a goodness-of-fit of r2 = 0.99). A double asterisk
(**) denotes a probability, p, ,0.001 that gD-2-antibody levels were
equivalent to naı̈ve mice, as determined by one-way ANOVA and
Tukey’s post hoc t-test.
doi:10.1371/journal.pone.0017748.g001
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replicated to respective titers of ,300 and 50 pfu per footpad on

Days 1 and 2 p.i., which was 30-fold lower than wild-type HSV-2

(Fig. 3B). In ACV-treated mice, peak titers of HSV-2 MS

replication were only ,10 pfu per footpad, which was 1,000-fold

lower than HSV-2 MS titers in untreated mice (Fig. 3B). This

latter observation appeared to explain how 100% of ACV-treated

mice survived HSV-2 MS inoculation of the rear footpad without

any overt signs of disease.

On Day 30, all mice were boosted via injection of the same

immunogens into their left, rear footpads (Fig. 3A). Mice were bled

on Day 60 p.i. and sera were analyzed for the presence of gD-2-

specific antibody. Mice immunized with culture medium (naı̈ve) or

GFP did not possess detectable levels of gD-2-specific antibody

(Fig. 3C). Mice vaccinated with the gD-2 subunit vaccine possessed

titers of gD-2-antibody that were 2,000-fold above background

(Fig. 3C). Based on the 1:100 dilution of serum used in the ELISA,

gD-2-vaccinated mice had an average gD-2 antibody titer of

1:200,000. Mice vaccinated with HSV-2 0DNLS or MS possessed

far lower levels of gD-2 antibody that were 97- and 85-fold above

background, respectively (Fig. 3C). Thus, the gD-2 subunit vaccine

formulation used in the current study elicited a gD-2 antibody

response similar in potency to that described elsewhere [6,37,38].

Protective immunity elicited by vaccination with HSV-2
0DNLS versus gD-2

On Days 80, 90, and 100 post-immunization, n = 5 mice per

group were challenged with 500,000 pfu per vagina of wild-type

HSV-2 (Fig. 3A). The summated results of replicate challenge

experiments are presented, as follows. On Days 1 and 2 post-

challenge, naı̈ve mice shed an average 200,000 and 50,000 pfu per

vagina, respectively (‘X’ symbols in Figs. 4A, 4B). Immunization

with gD-2 or GFP did not alter the course of HSV-2 vaginal

shedding for the first 5 days post-challenge (Fig. 4A, 4B). In

contrast, immunization with HSV-2 0DNLS or MS reduced

shedding of the HSV-2 challenge virus from the vagina at all times

(Fig. 4A, 4B). On average, 0DNLS- and MS-immunized mice shed

a respective 430- and 120-fold less HSV-2 challenge virus between

Days 1 and 7 relative to naı̈ve mice (Fig. 4C). In contrast, gD-2

and GFP-immunized mice shed a respective 3.4- and 0.9-fold less

HSV-2 per vagina relative to naı̈ve mice (Fig. 4C). Thus, mice

immunized with HSV-2 0DNLS shed an average 125-fold less

HSV-2 MS from their vaginas relative to gD-2-immunized mice,

and this difference was significant (p,10223; two-sided, paired

t-test).

None of the naı̈ve or GFP-immunized mice survived HSV-2

vaginal challenge, and only 20% of gD-2-immunized mice

survived the same challenge (Fig. 4D). In contrast, 15 of 15

0DNLS-immunized mice and 15 of 15 MS-immunized mice

Figure 2. Mice immunized with HSV-2 0DNLS are resistant to
HSV-2 vaginal challenge. Mice were treated with 2 mg medox-
yprogesterone 7 and 3 days prior to vaginal HSV-2 challenge [54]. On
Day 56 p.i., HSV-2 0DNLS- and MS-immunized mice were challenged
with 500,000 pfu per vagina of HSV-2 MS. (A) HSV-2 shedding from the
vagina between Days 2 and 6 post-challenge in naı̈ve mice (n = 10)
versus mice inoculated in the rear footpads with HSV-2 MS (n = 5) or
HSV-2 0DNLS (n = 5). (B) HSV-2 shedding from the vagina of naı̈ve mice
versus mice inoculated in the eyes, nose, or vagina with HSV-2 0DNLS
(n = 5 per group). In panels A and B, a single asterisk (*) denotes a
probability, p, ,0.05 and a double asterisk (**) denotes p,0.001 that
HSV-2 shedding was equivalent to naı̈ve controls on that day, as
determined by one-way ANOVA and Tukey’s post hoc t-test. (C) Survival
frequency of naı̈ve mice (n = 10) versus immunized mice (n = 5 per
group) after HSV-2 challenge of the vagina. A double asterisk (**)
denotes p,0.001 that survival frequency was equivalent to naı̈ve mice.
doi:10.1371/journal.pone.0017748.g002
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survived HSV-2 vaginal challenge (Fig. 4D). Most 0DNLS- and

MS-immunized mice survived without any overt symptoms of

disease for 30 days after vaginal challenge; however, 1 of 15 mice

in each group exhibited limited perivaginal fur loss between 10

and 30 days after HSV-2 vaginal challenge.

To verify that protective immunity against HSV-2 was not

unique to the vagina, mice were also challenged with 100,000 pfu

per eye of HSV-2 MS on Days 80, 90, and 100 post-vaccination.

In general, equivalent results were obtained in ocular and vaginal

challenge experiments (Figs. 4 and S3). However, fewer mice

survived HSV-2 MS challenge of the eyes because of the

extraordinary rapidity with which HSV-2 MS spreads from the

eyes to the central nervous system (6–7 days to death; Fig. 1A).

Consequently, 0 of 15 mice immunized with culture medium,

GFP, or gD-2 survived HSV-2 MS challenge of the eyes (Fig.

S3D). In contrast, 14 of 15 mice immunized with HSV-2 0DNLS-

or MS survived the same, stringent ocular HSV-2 challenge (Fig.

S3D), and ,90% of these mice survived without any overt

symptoms of disease for 30 days after challenge. However,

histological analysis was not performed on HSV-2 MS-challenged

vaginas or eyes, and we cannot exclude the possibility that HSV-2

MS caused pathological changes in the infected tissues that were

not visible upon gross examination of mice. These results indicated

that mice immunized with HSV-2 0DNLS were significantly better

protected against wild-type HSV-2 challenge than gD-2-immu-

nized mice, which remained vulnerable to wild-type HSV-2

replication and disease.

Re-evaluating the magnitude of the HSV-2-specific IgG
antibody response

Protective immunity against HSV-2 normally involves lympho-

cyte recognition of many HSV-2 proteins [56,57,58,59]. Thus, we

Figure 3. Immunization with HSV-2 0DNLS, gD-2, or control immunogens. (A) Design of vaccine-challenge experiments. Protein-immunized
mice were injected in their right, rear footpads on Day 0 with 10 mg monophosphoryl lipid A, 2.5 mg gD-2 or GFP, and alum (n = 40 per group). On
Day 30, mice received an equivalent immunization in their left, rear footpads. Virus-immunized mice received injections on Days 0 and 30 of culture
medium (mock), 16106 pfu of HSV-2 0DNLS, or 16106 pfu of HSV-2 MS (n = 40 per group). Mice immunized with HSV-2 MS received 1 mg/ml
acyclovir in drinking water from Days 21 to +20 p.i. On Day 60, blood was harvested from all mice, and on Days 80, 90, or 100, mice were challenged
with wild-type HSV-2 MS. (B) HSV-2 replication in mouse footpads. In a parallel experiment, mice were footpad-injected with 16106 pfu of HSV-2 MS
in the presence or absence of oral acyclovir (ACV) or 16106 pfu of HSV-2 0DNLS. On Days 1, 2, and 3 p.i., footpad titers of infectious HSV-2 were
determined in n = 8 mice per group; on days 5 and 7 p.i., footpad titers were determined in n = 4 mice per group. All datum points represent mean 6
sem pfu per footpad. A double asterisk (**) denotes p,0.001 that viral titers per footpad were the same as HSV-2 MS-inoculated mice not treated
with acyclovir. (C) Mean 6 sem relative abundance of gD-2 specific IgG antibody in mouse serum on Day 60 p.i., as determined by ELISA on 1:100
dilutions of mouse serum (n = 30 per group). Relative units of IgG abundance are expressed as ‘‘fold-increase above background,’’ as determined
relative to a 0.33-log dilution series of high titer anti-HSV-2 antiserum that provided the standard curve that defined the quantitative relationship
between anti-gD-2 IgG antibody abundance and colorimetric development. A double asterisk (**) denotes p,0.001 that gD-2-antibody levels were
equivalent to naı̈ve (medium-treated) mice, as determined by one-way ANOVA and Tukey’s post hoc t-test.
doi:10.1371/journal.pone.0017748.g003
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suspected that the gD-2 antibody-capture ELISA (Fig. 3C) was not

representative of the magnitude of the polyclonal antibody response

elicited by HSV-2 0DNLS or MS. To test this hypothesis, Day 60

serum samples collected from mice prior to HSV-2 challenge were

re-analyzed in assays better suited to estimate the magnitude of a

polyclonal antibody response against multiple HSV-2 antigens;

namely, 1. antibody-dependent neutralization of HSV-2 virions

(which contain at least 6 glycoproteins; [43,60]) and 2. antibody-

binding to HSV-2-infected Vero cells.

Antisera from naı̈ve- and GFP-immunized mice consistently

failed to neutralize the infectivity of ,175 pfu of HSV-2 at a

serum dilution of 1:46 (Fig. 5A). Antisera from gD-2-immunized

mice had an average neutralizing antibody titer of 70 (Fig. 5A).

Antisera from 0DNLS- or MS-immunized mice was ,10-fold

more potent in its capacity to neutralize infectious HSV-2.

Specifically, antisera from mice immunized with HSV-2 0DNLS

or MS had an average neutralizing antibody titer of ,950

(Fig. 5A).

Figure 4. Resistance of naı̈ve versus immunized mice to vaginal HSV-2 infection. Mice were treated with 2 mg medoxyprogesterone 7 and
3 days prior to vaginal HSV-2 challenge [54]. On Days 80, 90, or 100 p.i., mice were challenged with 500,000 pfu per vagina of HSV-2 MS (n = 5 per
group). The summated results from all three experiments are presented in each panel (gn = 15 per group). (A) Vaginal HSV-2 shedding between Days
1 and 7 post-challenge in mice that were naı̈ve or immunized with gD-21-306t versus HSV-2 0DNLS. (B) Vaginal HSV-2 shedding in mice that were naı̈ve
or immunized with GFP versus HSV-2 MS. In panels A and B, a single asterisk (*) denotes p,0.05 and a double asterisk (**) denotes p,0.001 that HSV-
2 shedding was equivalent to naı̈ve mice on that day, as determined by one-way ANOVA and Tukey’s post hoc t-test. (C) Mean 6 sem reduction in
HSV-2 shedding on Days 1–7 post-challenge relative to the average titer of HSV-2 shed by naı̈ve mice on that day (n = 75 per group). In panel C, a
single asterisk (*) denotes p,0.05 and a double asterisk (**) denotes p,0.001 that reductions in vaginal shedding of HSV-2 MS were significantly
greater than a value of 1, as determined by one-way ANOVA and Tukey’s post hoc t-test. The difference in reductions in HSV-2 MS vaginal shedding
between 0DNLS- and gD-2-immunized mice was significant (p,10223; two-sided, paired t-test). (D) Survival frequency over time following HSV-2 MS
challenge of the vagina. A double asterisk (**) denotes p,0.001 that survival frequency was equivalent to naı̈ve mice, as determined by Fisher’s Exact
Test. The survival rate of gD-2 immunized mice was not significantly different than naı̈ve mice (p = 0.22, Fisher’s Exact Test).
doi:10.1371/journal.pone.0017748.g004
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Immunofluorescence-based assays were developed to detect

polyclonal antibody reactivity against the many HSV-2 proteins

present in virus-infected cells. In the first assay, fixed and

permeabilized HSV-2 plaques were incubated with 1:5,000

dilutions of mouse serum, and stained with Alexa Fluor-594-

conjugated secondary antibody. When fixed monolayers contain-

ing HSV-2 plaques were incubated with GFP-antiserum, binding

of IgG to HSV-2 infected cells was not observed (Fig. 5B). Antisera

from gD-2-immunized mice contained IgG that bound HSV-2

plaques, but the immunofluorescent signal was weak (Fig. 5B). In

contrast, antisera from 0DNLS- or MS-immunized mice contained

IgG that bound HSV-2-infected cells to much higher levels than

surrounding, uninfected Vero cells (Fig. 5B).

Binding of IgG antibody to HSV-2-infected cells was quantified

by a flow cytometry-based assay, which is summarized in Fig. S4.

As expected, IgG antibodies in naı̈ve serum and GFP-antiserum

did not preferentially bind HSV-2-infected Vero cells versus

uninfected Vero cells (Fig. 5C). Serum samples from gD-2-

immunized mice contained IgG antibodies that bound HSV-2-

infected cells to levels that were an average 15-fold greater than

the background rate of antibody adhesion to uninfected cells

(Fig. 5C). Serum from 0DNLS- or MS-immunized mice contained

Figure 5. Polyclonal HSV-2 IgG antibody response elicited by HSV-2 0DNLS, gD-2, or control immunogens. (A) Mean 6 sem
neutralizing antibody titer of Day 60 serum samples (n = 20 per group). The titer of each serum sample was considered to be the reciprocal of the
largest serum dilution that reduced HSV-2’s cytopathic effect in Vero cell monolayers by at least 50%. (B) Representative immunofluorescent labeling
of fixed HSV-2 plaques with a 1:5,000 dilution of Day 60 serum from each immunization group. (C) Flow cytometric measurement of pan-HSV-2-
specific IgG levels in Day 60 sera, as determined by IgG binding to fixed HSV-2-infected cells versus uninfected Vero cells (n = 8 per group). In panels A
and C, a double asterisk (**) denotes p,0.001 that neutralizing antibody titers or pan-HSV-2 IgG levels were equivalent to naı̈ve mice, as determined
by one-way ANOVA and Tukey’s post hoc t-test. The difference in pan HSV-2 IgG levels between 0DNLS- and gD-2-immunized mice was significant
(p,0.0001; two-sided, paired t-test). (D) Regression analysis of the logarithm of pan-HSV-2 IgG levels (x-variable, as measured on Day 60) in n = 25
mice versus the logarithmic reduction in vaginal HSV-2 MS shedding (y-variable, as measured on Day 81) observed in the same n = 25 mice at
24 hours post-vaginal challenge. The x-variable data is based on a subset of the data summarized in Figure 5C, and likewise the y-variable data is
based on a subset of the data summarized in Figure 4C. The individual datum points are derived from n = 5 mice per group that were immunized
with medium (naı̈ve), GFP, gD-2, HSV-2 0DNLS, or HSV-2 MS (ACV-restrained infection), as indicated in the legend in Panel D. The quantity on the y-
axis, Dlog (pfu/vagina), represents the logarithmic decrease of HSV-2 MS shed from an individual mouse vagina at 24 hours post-challenge relative to
5.20 logs, which was the average titer of HSV-2 MS shed by naı̈ve mice at 24 hours post-challenge. The goodness-of-fit of the correlation between log
(pan-HSV-2 IgG) and Dlog (pfu/vagina) was r2 = 0.83 and the slope of the correlation was 1.3860.13 (p,1029).
doi:10.1371/journal.pone.0017748.g005
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,10-fold higher levels of IgG antibody against total HSV-2

antigen. Specifically, 0DNLS antiserum contained pan-HSV-2

IgG levels that were an average 190-fold above background

(Fig. 5C), and which were significantly greater than observed in

gD-2-immunized mice (p,0.0001; two-sided, paired t-test).

The average pan-HSV-2 IgG level in each treatment group

(Fig. 5C) appeared to correlate with reductions in vaginal HSV-2

MS shedding (Fig. 4C). To test the validity of this inference,

regression analysis was applied to a data set collected from n = 25

mice (n = 5 per immunization group) included in both assays.

Specifically, regression analysis was used to determine if log (pan-

HSV-2 IgG level) in an individual mouse was predictive of log

(reduction in HSV-2 MS shedding) observed in the same mouse

24 hours after vaginal challenge (Fig. 5D). Each mouse was

challenged with HSV-2 MS on Day 80, and the reduction in

HSV-2 MS vaginal shedding from an individual mouse was

calculated as y =Dlog (pfu/vagina) = 5.20 log10 pfu/vagina (mean

naı̈ve titer) – HSV-2 titer shed from this mouse (Fig. 5D). Mice

immunized with HSV-2 0DNLS or MS possessed the highest

levels of pan-HSV-2 IgG (x-variable) and exhibited the largest

reductions in HSV-2 MS vaginal shedding at 24 hours post-

challenge (y-variable; Fig. 5D). Mice immunized with gD-2

possessed modest levels of pan-HSV-2 IgG and likewise exhibited

modest reductions in HSV-2 MS vaginal shedding (Fig. 5D).

Regression analysis confirmed that log (pan-HSV-2 IgG) in mice

was predictive of the logarithmic reduction in HSV-2 MS vaginal

shedding (Fig. 5D; r2 = 0.83, p,1029 that x- and y-variables were

unrelated). These data indicated that 1. immunization with HSV-

2 0DNLS elicited a greater pan-HSV-2 IgG antibody response

than a gD-2 subunit vaccine (Fig. 5C; p,0.0001; two-sided, paired

t-test), and 2. pan-HSV-2 IgG antibody levels were highly

predictive of protection against HSV-2 MS vaginal challenge

(Fig. 5D).

In vivo imaging of vaccine-induced protection: tests with
HSV-2 MS-luciferase

Individuals who carry latent HSV infections are resistant to

superinfection with the same HSV serotype [61,62,63]. Likewise,

mice immunized with HSV-2 0DNLS or MS might be resistant to

superinfection with wild-type HSV-2 (Fig. 4). To test this hypothesis,

HSV-2 challenge viruses were constructed whose spread could be

imaged in vivo. Specifically, HSV-2 MS-luciferase and HSV-2 MS-

GFP were constructed by inserting a luciferase or GFP expression

cassette into HSV-2’s non-essential LAT locus (Fig. S5). HSV-2 MS-

luciferase spread was compared in immunized mice (Fig. 6), and the

results are summarized as follows.

On Day 130 post-immunization, naı̈ve or immunized mice were

challenged with 500,000 pfu per vagina of HSV-2 MS-luciferase

(n = 2 per group), and bioluminescent imaging was used to

visualize viral spread (Fig. 6A). The spread of HSV-2 MS-

luciferase from the vaginas of naı̈ve and gD-2-immunized mice

was readily visualized between Days 2 and 6 post-challenge

(Fig. 6A). In contrast, luciferase expression was not detectable in

0DNLS- or MS-immunized mice (Fig. 6A). A replicate challenge

experiment performed on Day 50 p.i. yielded equivalent results

(n = 3 mice per group). The summated results were statistically

analyzed, and the primary conclusions are presented (Fig. 6B). In

HSV-2 MS-luciferase-challenged naı̈ve mice, luciferase activity

was an average 14-, 90-, and 270-fold above background on Days

2, 4, and 6 post-challenge, respectively (Fig. 6B). In gD-2-

immunized mice, luciferase activity was reduced by 4.5- and 20-

fold on Days 4 and 6 relative to naı̈ve controls, respectively, but

was still significantly above background (Fig. 6B). In contrast,

luciferase activity in 0DNLS- or MS-immunized mice did not

significantly differ from uninfected control mice injected with

luciferin substrate (not shown) on Days 2, 4, or 6 post-challenge

(Fig. 6B). Between Days 2 and 6 post-vaginal challenge, luciferase

activity was an average 10-fold lower in 0DNLS- versus gD-2-

immunized mice and this difference was significant (p,0.0001;

two-sided, paired t-test).

HSV-2 MS-luciferase replication and spread may have

occurred inside the vagina of 0DNLS- or MS-immunized mice at

levels that were not detected by our bioluminescent imager. To

address this caveat, an ocular challenge experiment was performed

on Day 130 post-immunization such that an external surface

served as the site of challenge (n = 2 mice per group). Following

inoculation with 100,000 pfu per eye of HSV-2 MS-luciferase,

luciferase activity was significantly greater than background in the

eyes and faces of naı̈ve and gD-2-immunized mice between Days 2

and 6 post-challenge (Fig. 6C, 6D). In contrast, luciferase activity

was not detectable in mice immunized with HSV-2 0DNLS or MS

(Fig. 6C, 6D). A replicate challenge experiment performed on Day

50 p.i. yielded equivalent results (n = 2 mice per group). The

summated results were statistically analyzed, and the primary

conclusions are presented (Fig. 6D). In HSV-2 MS-luciferase-

infected naı̈ve mice, luciferase activity in the eyes and faces of mice

was an average 15-, 580-, and 150-times background on Days 2, 4,

and 6 post-challenge, respectively (Fig. 6D). In gD-2-immunized

mice, luciferase activity was reduced relative to naı̈ve mice by 7-

and 3-fold on Days 4 and 6 post-challenge, respectively (Fig. 6D).

Between Days 2 and 6 post-ocular challenge, luciferase activity

was an average 25-fold lower in 0DNLS-versus gD-2-immunized

mice and this difference was significant (p,0.0001; two-sided,

paired t-test). Therefore, mice immunized with HSV-2 0DNLS

were 10- to 25-fold more resistant to HSV-2 MS-luciferase

challenge than gD-2-immunized mice.

In vivo imaging of vaccine-induced protection: tests with
HSV-2 MS-GFP

Bioluminescent imaging of luciferase activity in vivo is a

macroscopic measurement. We reasoned that HSV-2 MS-

luciferase might reproducibly establish microfoci of infection in

0DNLS- and MS-immunized mice that were not detectable with a

bioluminescent imager. To address this possibility, naı̈ve and

0DNLS-immunized mice were challenged with 100,000 pfu per

eye of HSV-2 MS-GFP. At 24 hours post-challenge, GFP

expression was imaged in mouse eyes and faces using an inverted

fluorescent microscope (n = 3 per group). As predicted, foci of

HSV-2 MS-GFP replication were consistently detected in the eyes

of both naı̈ve and 0DNLS-immunized mice at 24 hours post-

challenge (Fig. 7). However, the extent of HSV-2 MS-GFP spread

in the eyes (i.e., area of GFP expression) was restricted by an order

of magnitude in 0DNLS-immunized mice relative to naı̈ve controls

(Fig. 7). Thus, 0DNLS-vaccine-induced protection against HSV-2

infection appeared to be active within just the first 24 hours post-

challenge (Fig. 7). Consistent with this interpretation, HSV-2 MS-

GFP consistently caused a zosteriform pattern of spread in naı̈ve

mice (Fig. S6), and fatal encephalitis developed within 8 days post-

challenge. In contrast, sites of HSV-2 MS-GFP replication were

not visible in the eyes or facial epithelium of 0DNLS-immunized

mice at any time beyond Day 1 post-challenge (Fig. S6).

Therefore, in vivo imaging indicated that 0DNLS-immunized mice

were able to rapidly control the spread of a superinfecting HSV-2

virus (Fig. 6, 7, and S6).

Summary of HSV-2 MS challenge experiments
In the current study, several hundred female ICR mice were

challenged with the MS strain of wild-type HSV-2 in nineteen
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independent challenge experiments (Tables 1 and S1). The results

of these tests are summarized, as follows. None of the naı̈ve mice

used in these tests survived HSV-2 MS challenge of the eyes (0 of

99) or vagina (0 of 25). None of the GFP-immunized mice survived

HSV-2 MS challenge of the eyes (0 of 15) or vagina (0 of 15). None

of the gD-2-immunized mice survived HSV-2 MS challenge of the

eyes (0 of 30), but 3 of 15 survived HSV-2 MS challenge of the

vagina (Table 1). Mice immunized with live HSV-2 viruses were

far better protected against later exposures to wild-type HSV-2

MS. Specifically, 79 of 80 0DNLS-immunized mice survived

HSV-2 MS challenge of the eyes, and 35 of 35 0DNLS-immunized

mice survived HSV-2 MS challenge of the vagina (Table 1). Thus,

0DNLS-immunized mice were ,15 times more likely to survive

HSV-2 MS challenge than gD-2-immunized mice, and this

difference was significant (Table 1; p,1028, Fisher’s Exact Test).

Likewise, 46 of 49 MS-immunized mice survived HSV-2 MS

challenge of the eyes, and 15 of 15 MS-immunized mice survived

HSV-2 MS challenge of the vagina (Table 1).

Based on the results of individual challenge experiments (Table

S1), we compared the survival rates of gD-2 and 0DNLS-

immunized mice as a function of time between immunization

and HSV-2 MS challenge (Fig. 8). In a total of 8 experiments,

Figure 6. Vaccine-induced protection against HSV-2 MS-luciferase infection. (A and C) Mice were treated with 2 mg medoxyprogesterone
7 and 3 days prior to vaginal HSV-2 challenge [54]. On Day 130 p.i., mice were challenged with (A) 500,000 pfu per vagina or (C) 100,000 pfu per eye
of HSV-2 MS-luciferase, and were anaesthetized and injected with 3 mg D-luciferin substrate at times post-challenge for imaging in a bioluminescent
imager. Not shown in panels A or C are the age- and sex-matched, uninfected control mice included in these analyses that were anaesthetized and
injected with 3 mg D-luciferin substrate at the same time, and which served as a background control to define the background level of light emission
recorded from each mouse by the bioluminescent imager. (B and D) Mean 6 sem of luciferase activity in mice challenged in the (B) vagina or (D)
eyes with HSV-2 MS-luciferase, as measured by the fold-increase in light emission from each mouse relative to an uninfected background control
mouse injected with 3 mg D-luciferin substrate. In the vaginally challenged group, each datum point represents the mean 6 sem of luciferase activity
based on gn = 5 per group (n = 3 challenged on Day 50 p.i. and n = 2 challenged on Day 130 p.i.). In the ocularly challenged group, each datum point
represents the mean 6 sem of luciferase activity based on gn = 4 per group (n = 2 challenged on Day 50 p.i. and n = 2 challenged on Day 130 p.i.). A
single asterisk (*) denotes p,0.05 and a double asterisk (**) denotes p,0.001 that luciferase activity in HSV-2 MS-luciferase-challenged mice was
significantly different from uninfected control mice injected with 3 mg D-luciferin, as determined by one-way ANOVA and Tukey’s post hoc t-test. In
both vaginal and ocular challenge tests, luciferase activity was significantly different between gD-2- and 0DNLS-immunized mice (p,0.0001; two-
sided, paired t-test).
doi:10.1371/journal.pone.0017748.g006
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Figure 7. HSV-2 MS-GFP infection is established in the eyes of HSV-2 0DNLS-immunized mice, but is rapidly restricted. A naı̈ve and
HSV-2 0DNLS-immunized mouse, as observed 24 hours after challenge with 100,000 pfu per eye of HSV-2 MS-GFP. Experiments were performed on
n = 3 mice per group and a representative animal is shown. The complete progression of HSV-2 MS-GFP infection in this naı̈ve mouse versus
immunized mouse is shown in Figure S6.
doi:10.1371/journal.pone.0017748.g007

Table 1. Survival rates in HSV-2 MS challenge experiments.

HSV-2 MS challenge of the eye (100,000 pfu/eye)

naı̈vea GFP gD-2 0DNLS MS

Survival rate
(# of experiments)

0/99b

(n = 15)
0/15
(n = 3)

0/30
(n = 5)

79/80**,{

(n = 11)
46/49**
(n = 8)

HSV-2 MS challenge of the vagina (500,000 pfu/vagina)

Naı̈ve GFP gD-2 0DNLS MS

Survival rate
(# of experiments)

0/25
(n = 4)

0/15
(n = 3)

3/15*
(n = 3)

35/35**,{

(n = 4)
15/15**
(n = 3)

Summated results

Naı̈ve GFP gD-2 0DNLS MS

Survival rate 0/124
(n = 19)

0/30
(n = 6)

3/45*
(n = 8)

114/115**,{

(n = 15)
61/64**
(n = 11)

aImmunization status of mice at the time of HSV-2 MS challenge, which were vaccinated 45 to 190 days earlier with culture medium (naı̈ve), GFP, gD-2, 0DNLS, or HSV-2
MS.

bFrequency of mice that survived until 30 days after challenge with wild-type HSV-2 MS. The total number of independent experiments performed is indicated by the n-
value in parentheses.

*p,0.05 that the survival frequency was equivalent to naı̈ve mice following HSV-2 MS challenge, as determined by Fisher’s Exact Test.
**p,1026 that survival frequency was equivalent to naı̈ve mice following HSV-2 MS challenge, as determined by Fisher’s Exact Test.
{p,1028 that survival frequency was equivalent between mice immunized with HSV-2 0DNLS versus a gD-2 subunit vaccine following HSV-2 MS challenge, as
determined by Fisher’s Exact Test.

doi:10.1371/journal.pone.0017748.t001
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866% of gD-2-immunized mice survived HSV-2 MS challenge

(Fig. 8, Table S1). In a total of 15 experiments, 9961% of 0DNLS-

immunized mice survived HSV-2 MS challenge (Fig. 8, Table S1).

This difference in survival frequency between 0DNLS- and gD-2-

immunized mice was significant (p,10215; two-sided Student’s t-

test). At all times post-immunization, gD-2 immunized mice were

incompletely protected against HSV-2 MS (Fig. 8). In contrast,

nearly 100% of 0DNLS-immunized mice survived HSV-2 MS

challenge regardless of whether they were challenged on Days 56,

80, 100, or 190 post-immunization (Fig. 8). We conclude that mice

immunized with a live viral vaccine, HSV-2 0DNLS, possessed

significantly greater protection against lethal HSV-2 challenge

than mice immunized with a gD-2 subunit vaccine.

Discussion

Measuring vaccine-induced resistance to HSV-2
HSV-2 vaccines are often described in the binary terms of

effective versus ineffective. Such qualitative terms and qualitative

measures of protection (e.g., reductions in disease and death)

provide only a crude basis for estimating the potency of HSV-2

vaccine candidates. The quantity of vaccine-induced resistance to HSV-

2 is a function of the frequency of HSV-2 specific B and T cells

that have encountered their cognate antigen, and as a result have

proliferated and/or differentiated into memory or effector cells.

The adaptive immune response to any antigen involves thousands

to millions of lymphocytes, and thus behaves as a continuous

variable that varies over at least 2 to 3 orders of magnitude. If

adaptive immunity to HSV-2 behaves as a continuous variable in

nature, then the potency of vaccine-induced resistance to HSV-2 is best

described in similarly quantitative terms.

Such theoretical considerations have little value unless a method

exists to measure the proposed quantity of vaccine-induced resistance to

HSV-2. Herein, we identify four measures that strongly correlate

with functional resistance to HSV-2; namely, 1. quantitative

reductions in shedding of HSV-2 challenge virus from the vagina

(Fig. 4C); 2. abundance of IgG antibody against total HSV-2

antigen (Fig. 5C); 3. in vivo imaging and quantitation of restricted

spread of a bioluminescent HSV-2 challenge virus from the site of

challenge (Fig. 6); and 4. in vivo imaging of restricted spread of a

GFP-expressing HSV-2 challenge virus at the site of challenge

(Fig. 7). The last three of these methods are novel. We propose that

such measures of vaccine-induced resistance to HSV-2 provide a

superior basis for analyzing HSV-2 vaccine potency, as opposed to

more qualitative measures of vaccine-induced protection, such as

i. reduced disease score or ii. increased survival.

Resistance to HSV-2 elicited by a gD-2 subunit versus
0DNLS virus

Mice immunized with a gD-2 vaccine exhibited significant

resistance to HSV-2 relative to naı̈ve mice, as demonstrated by i. a

3.4-fold reduction in HSV-2 challenge virus shedding from the

vagina (Fig. 4C); ii. a 15-fold increase in pan-HSV-2 IgG levels

(Fig. 5C); and iii. a 5- to 20-fold reduction in the spread of a

bioluminescent HSV-2 challenge virus (Fig. 6).

These results are consistent with published findings that a gD-2

vaccine elicits significant resistance to HSV-2 infection

[6,37,38,42]. However, the magnitude of gD-2 vaccine-induced

resistance (3- to 20-fold) was dwarfed by the HSV-2 0DNLS

vaccine, which elicited a 200- to 500-fold increase in resistance to

HSV-2 infection (Fig. 4, 5, 6). Such a reference point is absent

from most gD-2 vaccine-challenge studies, which focus on the

difference between naı̈ve and gD-2-immunized animals

[6,37,38,42]. A recent study reported that naı̈ve guinea pigs and

guinea pigs vaccinated with gD-2, alum, and MPL shed equivalent

levels of HSV-2 challenge virus from their vaginas on Days 1, 2,

and 4 post-challenge, (Fig. 1C of Ref. [6]). This is comparable to

what we observed in mice (Fig. 4A). Thus, we concur with the

prevailing view that gD-2 subunit vaccines elicit significant

resistance to HSV-2 infection. However, we note that a live

HSV-2 ICP02 virus, 0DNLS, elicits 10 to 100 times greater

protection against genital herpes.

One caveat of the current study is that tests were performed in

mice, and not the preferred guinea pig HSV-2 vaccine-challenge

model. Studies are in progress to determine if HSV-2 0DNLS will

be equally effective as a HSV-2 vaccine in guinea pigs. A second

caveat of the study is that we did not use Glaxo Smith Kline’s

proprietary AS04 adjuvant system [38]. Thus, our gD-2 vaccine

formulation may not elicit the same level of resistance to HSV-2

that may be obtained with a more potent combination of gD-2 and

adjuvant [6,38].

Why does the 0DNLS vaccine elicit greater protection
against HSV-2 infection?

Prior to the recent SimpilirixTM vaccine trials, two earlier

permutations of a gD-2 subunit yielded equivocal results in human

clinical trials [36,41]. Based on the premise that a more potent

adjuvant (alum+MPL) would increase gD-2’s efficacy as a genital

herpes vaccine [37,38], the NIAID invested $27.6 million in the

Herpevac/SimpilirixTM vaccine trial for women conducted

Figure 8. HSV-2 0DNLS-induced protective immunity does not
decline between Days 30 and 190 post-immunization. The mean
6 sem frequency of survival following HSV-2 MS challenge was
compared over time in mice immunized with HSV-2 0DNLS or gD-2. The
gD-2 plot is based on survival frequencies observed in challenge
experiments performed between Days 30–60 (n = 1), 70–80 (n = 3), and
90–100 (n = 4) post-immunization. The 0DNLS plot is based on survival
frequencies observed in challenge experiments performed between
Days 30–60 (n = 5), 70–80 (n = 4), 90–100 (n = 4), and 140–190 (n = 2)
post-immunization. Specific outcomes of the n = 15 challenge experi-
ments are summarized in Table S1. The double asterisk (**) denotes that
differences in percent survival of 0DNLS-versus gD-2-immunized mice
following HSV-2 MS challenge were significant (p,10215; two-sided
Student’s t-test).
doi:10.1371/journal.pone.0017748.g008
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between 2003 and 2009 [48]. Although the data remain to be

published, Glaxo Smith Kline recently announced that this latest

gD-2 subunit vaccine did not reduce the rate at which women

acquired HSV-2 genital herpes [49].

After investing so much time and effort into gD-2 subunit

vaccines [33], there is ample cause for dismay at the failure of a

promising genital herpes vaccine [48]. However, we would suggest

that the relevant question moving forward is this: ‘‘Is it reasonable to

expect that an immune response elicited against a single HSV-2 protein should

render the body completely resistant to infection with an actual HSV-2 virus?’’

Viruses are highly evolved genetic elements whose complexity

exceeds the sum of their proteins. As a result, the polyclonal

immune response to HSV-2 is more complex than the immune

response to a model antigen (i.e., HSV?OVA) (reviewed in Ref.

[50,64]). For the immunologist, we offer three reasons that a gD-2

subunit vaccine might be ineffective as a genital herpes vaccine

[48]. First, it is unlikely that the adaptive immune response to

HSV-2 hinges upon lymphocytes that recognize a single HSV-2

protein. Second, the T-cell response to HSV-2 involves, at a

minimum, CD8+ T cells specific for the viral proteins ICP0, ICP4,

ICP6, virion protein 5, and virion components encoded by the

UL25, UL46, UL47, and UL49 genes [56,57]. Third, we present

evidence that the B-cell response to HSV-2 cannot be directed

solely against gD-2 (Fig. 3C vs 5C); a subsequent study will address

the fact that 0DNLS-immunized mice possess serum antibodies

against .15 HSV-2 proteins (unpublished data of W. Halford).

While it is reasonable to assume that HSV-2 0DNLS elicits a

broader T cell response against HSV-2 than a gD-2 subunit

vaccine, further investigation will be required to test this

hypothesis.

For the non-immunologist, we offer the following analogy to

illustrate why we question the validity of the assumption that a gD-

2 subunit vaccine should be sufficient to prevent genital herpes

[33,48]. In human terms, relying on a gD-2 subunit vaccine to

prevent genital herpes is like trying to capture a criminal (HSV-2)

in a city (the body) by releasing a photograph of the criminal’s nose

(one subunit). While the nose may be a distinguishing feature, a full

portrait of the criminal would generate a larger population of

informants (antibodies and T-cells) better able to guide police

(leukocytes) to the criminal’s location. Immunologists will not

require this analogy to appreciate that a live HSV-2 virus possesses

far more epitopes than a HSV-2 subunit vaccine. However, most

viral vaccines continue to be based upon subunit vaccines that

contain ,10% of the epitopes encoded by a virus. Perhaps it is

time that immunological breadth should play a larger role in

vaccine design, as vaccines that contain .25% of a pathogen’s

proteins would be more likely to confer useful protection against a

pathogen.

Two decades ago, it appeared that gD-2 subunit vaccines would

be sufficient to prevent genital herpes in the human population

[33]. Today, the available evidence raises questions about the

viability of gD-2 subunits or any strategy that proposes to elicit

100% protection against HSV-2 by immunizing with 1% of HSV-

2’s proteome [11,12,13,14,15,16,17,18,19]. We propose that the

methods described herein for quantifying and visualizing vaccine-

induced resistance to HSV-2 (Fig. 4, 5, 6, 7) should prove useful in the

future for determining if any subunit vaccine is as effective as a

live-attenuated HSV-2 virus, such as 0DNLS.

Live, replicating viruses: our most successful mode of
vaccinating against viral disease

Originally, the term ‘vaccination’ meant to inoculate a person

with a less virulent virus (vaccinia virus) to elicit a cross-protective

immune response against the smallpox virus [65,66]. When we

have emulated the original approach, and used replication-

competent viruses as the immunogen, we have succeeded in

preventing yellow fever, poliomyelitis, mumps, measles, rubella,

chickenpox, and shingles [67,68,69,70,71,72]. In the past 30 years,

research into live-attenuated viral vaccines has been largely

replaced with research into viral subunit vaccines.

The term subunit ‘vaccine’ implies that the use of a viral

protein, in lieu of a live virus, is a minor modification of the

original strategy. However, we are unaware of any studies that

validate this assumption. To the best of our knowledge, this is the

first study in which immunization with (1) a viral protein subunit

was compared in side-by-side fashion to (2) a live-attenuated

variant of the same virus. In this study, immunization with a gD-2

subunit vaccine elicited 1–10% of the resistance to HSV-2 that

was attainable with a live virus. We will be interested to learn if this

observation is unique to HSV-2 or applies to other viruses. In

principle, one means to test this hypothesis would be to compare

the efficacy of immunization with one of the live viruses used in

childhood vaccines (i.e., varicella-zoster virus [VZV] Oka strain

[68], measles virus Schwarz strain [69], mumps virus Jeryl Linn

strain [70], or rubella virus Cendehill strain [71]) relative to

immunization with a protein subunit derived from the same virus.

An important question that remains to be addressed is whether

or not viral replication is essential for HSV-2 0DNLS to elicit

potent and sustained resistance to HSV-2 (Fig. 8). Hence, studies

are in progress to compare the efficacy of the HSV-2 0DNLS

vaccine strain relative to a replication-defective HSV-2 virus,

similar in principle to Sanofi Pasteur’s lead HSV-2 vaccine

candidate, ACAM-529 [23,24,25]. We conclude by noting that

while live viruses, such as HSV-2 0DNLS, are the basis of ,75%

of our effective viral vaccines [67,68,69,70,71,72], there is not a

single vaccine in clinical use that contains a replication-defective

virus.

The relative risk of live-attenuated viral vaccines
Vaccines based on recombinant proteins are safe, but have been

ineffective against herpes and AIDS [73,74]. The cost of subunit

vaccines that rarely succeed is staggering. Each year that herpes

and AIDS vaccines fail means that a. another 20 million people

will be newly infected with HSV-2; b. another 2 million people

will be newly infected with human immunodeficiency virus (HIV);

and c. public faith in vaccines will continue to erode. The original

‘vaccination’ approach [75], in which a weakened virus served as

the immunogen, underlies most of our successes in preventing viral

disease. Perhaps it is time to reconsider the relative risk of the

approach.

Live viral vaccines have always posed a risk to human health.

However, history suggests that the low risk of a well-designed, live-

attenuated viral vaccine is many thousands of times preferable to

the certainty of disease and/or death that occurs when a viral

pathogen is allowed to circulate in the human population. All of

the live-attenuated viral vaccines developed in the 20th century,

which remain in clinical use worldwide, are generally well

tolerated and highly effective in preventing viral disease

[76,77,78,79].

Mutagenesis of key viral activators, such as ICP0 [80,81,82,83],

is a general strategy that may be used to obtain live-replicating

viruses that are avirulent, but which retain the capacity to present

the entire protein signature of a viral pathogen to the adaptive

immune system [50,52]. The live viral vaccines used in clinical

practice today were developed between 1940 and 1975

[67,68,69,70,71,72], and rely on single-nucleotide substitutions

for their attenuated phenotype [84,85]. We propose that genetic

engineering could be applied to derive a 2nd generation of live-
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attenuated viruses that are equally effective, but which are safer

(more stable) due to large, in-frame deletions that are unable to

spontaneously revert to the wild-type genetic code.

Conclusion
Because a-herpesviruses establish life-long infections in neurons,

it has been suggested that a live a-herpesvirus vaccine would be

too dangerous for use in humans [23]. Such claims contradict the

fact that .55 million people have been inoculated with the

varicella-zoster virus (VZV) Oka strain, which like HSV-2 is a

neurotropic herpesvirus [77]. While the VZV Oka strain may

establish latent infections in human neurons and reactivate from

the latent state [86], clinical experience suggests that the risks

associated with this live VZV vaccine are far outweighed by the

benefits of not leaving a population susceptible to the .90% risk of

being infected with wild-type VZV [87]. If clinical experience with

the VZV Oka strain is any indication, then the risks associated

with a live HSV-2 0DNLS vaccine would be preferable to the

current situation in which wild-type HSV-2 is carried by ,1

billion people, and ,20 million people are newly infected each

year with wild-type, disease-causing strains of HSV-2.

It remains to be determined if HSV-2 ICP02 mutant viruses,

such as HSV-2 0DNLS, establish latent infections in vaccine

recipients. Likewise, many questions remain about this novel class

of live, interferon-sensitive HSV-2 vaccine [52]. However, what is

clear is that mice immunized with HSV-2 0DNLS were 10- to 100-

fold better protected against genital herpes than mice immunized

with a gD-2 subunit vaccine. Therefore, we conclude that a HSV-

2 vaccine would be more likely to prevent genital herpes if it

contained a live- and appropriately-attenuated HSV-2 virus rather

than another iteration of HSV-2 protein and adjuvant.

Materials and Methods

Ethics Statement
Mice were handled in accordance with the National Institutes of

Health Guide for the Care and Use of Laboratory Animals. This

study was approved by the Southern Illinois University School of

Medicine Laboratory Animal Care and Use Committee in August

2008, and was assigned Protocol Number #205-08-019. These

protocols remain active and are associated with a grant for the

‘‘Development of an Effective Genital Herpes Vaccine’’ (R21

AI081072).

Cells and viruses
Vero cells and U2OS cells were obtained from the American

Type Culture Collection (Manassas, VA), and High FiveTM insect

cells were obtained from Invitrogen Corporation (Carlsbad, CA).

The ICP0-complementing L7 cell line [88] was kindly provided

by Neal Deluca (University of Pittsburgh). Cell lines were

propagated in Dulbecco’s Modified Eagle’s medium supplement-

ed with 5% fetal bovine serum and antibiotics. The HSV-2

recombinant viruses used in this study (HSV-2 0DNLS, MS-GFP,

and MS-luciferase) were derivative of HSV-2 MS (American

Type Culture Collection). HSV-2 viruses were propagated in

U2OS cells at 34uC following inoculation with a multiplicity of

infection of 0.01 pfu per cell. For both wild-type HSV-2 and

HSV-2 ICP02 mutant viruses, viral stocks were generated that

were concentrated 10-fold by ultracentrifugation to achieve a

minimum titer of 36107 pfu/ml. An HSV-2 glycoprotein D-

expressing baculovirus was used to purify the gD-2306t protein

[34], and was generously provided by Dr. Gary Cohen and Dr.

Roslyn Eisenberg (University of Pennsylvania). The detailed

methods used to construct and characterize HSV-2 recombinant

viruses used in this study are provided in a recent publication

[52].

Footpad immunization of mice
Female ICR mice were obtained from Harlan Sprague Dawley

(Indianapolis, IN), and were first immunized at 6- to 10-weeks of

age. Prior to immunization, mice were anesthetized by i.p.

administration of xylazine (7 mg/kg) and ketamine (100 mg/kg).

i. Protein subunit vaccines. GFP or gD-2306t protein were

purified from baculovirus vector-infected insect cells as described

below. Protein subunit vaccines were prepared by combining

purified gD-2 or GFP with an equal volume of Imject alum

adjuvant (Thermo Scientific, Rockford, IL) to achieve a protein

concentration of 50 ng per ml. Monophosphoryl lipid A (Avanti

Polar Biolipids, Alabaster, AL) was added to a concentration of

200 ng per ml. After 1 hour, mice were injected in right, rear

footpads with 50 ml of this formulation on Day 0 such that mice

were immunized with 2.5 mg of gD-2 or GFP and 10 mg of

monophosphoryl lipid A. These doses of gD-2 were modeled after

the gD-2 vaccine-challenge studies of Bourne, et al. (2003, 2005)

[37,38]. Mice received an equivalent injection in left, rear footpads

on Day 30.

ii. HSV-2 viral vaccines. Virus-immunized mice were

treated on Days 0 and 30 as described above, but were

immunized with 50 ml of culture medium containing nothing

(mock), 16106 pfu of HSV-2 0DNLS, or 16106 pfu of HSV-2

MS. At the time of the first immunzaiton, mice immunized with

HSV-2 MS received 1 mg per ml acyclovir in their drinking water

from Days 21 to +20 p.i. to limit the pathogenesis of the primary

infection.

Inoculation of mice with HSV-2 in the eyes, nostrils, or
vagina

Female ICR mice that received a vaginal inoculum of HSV-2

were pre-treated 7 and 3 days prior to inoculation with 2 mg

medoxyprogesterone (Depo-ProveraH, Pfizer Inc., New York),

which increases the efficiency of vaginal infection [54]. Immedi-

ately prior to HSV-2 inoculation, mice were anesthetized by i.p.

administration of xylazine (7 mg/kg) and ketamine (100 mg/kg).

Ocular inoculation of mice was performed by scarifying the left

and right corneas with a 26-gauge needle, blotting tear film from

the eyes with tissue paper, and by placing 4 ml complete DMEM

containing 25,000 pfu/ml of HSV-2 MS or HSV-2 0DNLS on

each scarified eye. Nasal inoculation of mice was achieved by

instilling 5 ml per nostril of the same 25,000 pfu/ml solution of

HSV-2 MS or 0DNLS from a micropipettor. For vaginal

inoculation, the vagina was cleared of mucus by briefly

introducing the cotton end of a cotton-tipped applicator into the

vagina. Upon removal of the cotton swab, a pipettor was used to

deliver 20 ml complete DMEM containing 25,000 pfu/ml of virus

into the vaginal vault.

Measurement of infectious HSV-2 titers in footpads,
ocular tearfilm, or vaginal mucosa

Viral titers in the footpads of mice were determined by

sacrificing mice at the indicated time, cutting the footpad off the

end of the limb into 0.5 ml complete DMEM, and homogenizing

the tissue with a Pro 200 homogenizer (Pro Scientific, Oxford,

CT). Viral titers were determined by a 12-well plate plaque assay

on ICP0-complementing L7 cells cultured in complete DMEM

containing 0.5% methlycellulose. Viral titers in ocular tear film or

the vaginal secretions of mice were determined at times after

inoculation by swabbing the eye with a cotton-tipped applicator or
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inserting a cotton-tipped applicator into the vaginal vault, and

transferring the tip into 0.4 ml complete DMEM. Viral titers were

determined by a 96-well plate plaque assay on ICP0-complement-

ing L7 cells cultured in complete DMEM containing 0.5%

methlycellulose. After two to three days of incubation in each

plaque assay, cell monolayers were stained with a solution of 20%

methanol and 0.1% crystal violet and plaques were counted.

Purification of baculovirus-expressed gD-2 and GFP
The methods that were employed to express and purify

recombinant gD-2306t and GFP proteins from baculovirus-infected

insect cells are described, as follows.

i. Purification of gD-2306t antigen. The gD-2306t protein

engineered by Nicola, et al. (1996) possesses an N-terminal

honeybee melittin secretion signal in place of gD-2’s leader

peptide, followed by amino acids 1–306 of the mature gD-2

protein and a C-terminal His6 affinity-purification tag [34]. The

gD-2306t protein was isolated from a flask containing 26108 High

FiveTM insect cells that had been inoculated 48 hours earlier with

2 pfu per cell of gD-2306t -expressing baculovirus and incubated

while shaking at 27uC. Baculovirus-infected cells were removed by

centrifugation, and secreted gD-2306t protein was purifed from

supernatants by dialysis against an excess of 20 mM Tris pH 8.0,

300 mM NaCl, and 10% glycerol overnight. Imidazole was added

to the dialyzed supernatant to a concentration of 10 mM prior to

affinity purification on a HisTrapTM HP column (GE Healthcare

Biosciences, Piscataway, NJ) using an ÄKTApurifierTM fast-

performance liquid chromatography system (GE Healthcare

Biosciences). The gD-2306t protein was eluted from the column

with 300 mM imidazole, and purity was verified at .90% by

SDS-PAGE and Coomassie blue staining. Aliquots of gD-2306t

were stored at 280uC until use.

ii. Purification of GFP (irrelevant) antigen. A C-terminal,

His-tagged GFP coding sequence was created by PCR amplification

off of a pEGFP-C1 plasmid (Clontech Laboratories, Mountain

View, CA), and was introduced into the pFastBacHtc vector

(Invitrogen Corporation, Carlsbad, CA) via Nco I and Xho I

restriction sites. A stock of His-GFP virus was constructed in Sf9

insect cells according to the manufacturer’s protocol. Recombinant

GFP protein was isolated from His-GFP-infected High FiveTM

insect cells per the same protocol used to isolate gD-2306t, except

that His-GFP-infected insect cells were harvested by centrifugation

48 hours post-infection, lysed, and the lysate was applied to a

HisTrapTM HP column (GE Healthcare). Fractions containing

purified GFP (which were visibly lime-green) were combined,

aliquoted, and stored at 280uC until use.

Analysis of serum antibody responses to HSV-2 vaccines
Mice were bled on Day 50 or 60 post-inoculation by collecting

blood from the right retroorbital sinus with heparinized, Natelson

blood collecting tubes. The serum fraction was collected and

stored at 280uC until use in 1 of 4 assays for estimating the

abundance of HSV-2-specific antibody. Each method is described,

as follows.

i. gD-2-antibody-capture ELISA. High-binding EIA 96-well

plates (Costar, Corning, NY) were coated overnight at 4uC with

100 ml per well of sodium carbonate buffer (pH 9.6) containing

1.5 mg per ml gD-2306t protein [34]. Wells were blocked for 2 hours

with 400 ml of 2% dry milk dissolved in PBS+0.02% Tween-20

(polyoxyethylene-20-sorbitan monolaurate), hereafter referred to as

PBS-T buffer. Mouse serum was diluted 1:100 in PBS+1% fetal

bovine serum+0.02% Tween-20. After discarding blocking buffer

from ELISA plates, duplicate 100-ml samples of 1:100 diluted mouse

serum were added to gD2306t -coated wells and were incubated for

2 hours. ELISA plates were rinsed seven times with an excess of

PBS-T buffer prior to the addition of 100 ml secondary antibody

diluted 1:2500 in PBS-T buffer; the secondary antibody was alkaline

phosphatase-conjugated rabbit anti-mouse c chain (Rockland

Immunochemicals, Gilbertsville, PA). After allowing 1 hour,

secondary antibody was rinsed from plates seven times with PBS-

T buffer, and 200 m1 of p-nitrophenyl phosphate substrate (Sigma

Chemical Co., St. Louis, MO) was added to each well, and

colorimetric development (OD405) was measured after a 30 minute

incubation at room temperature.

ii. Antiserum-dependent neutralization of HSV-2 virion

infectivity. Two ml of each serum sample was added to a single

well in the top row of a microtiter plate containing 91 ml of complete

DMEM to achieve an initial 1:46 dilution. Serial 0.33-log dilutions

were achieved by serial transfer of 43 ml into 50 ml diluent (final

volume = 93 ml) from the top to the bottom of the plate. A virus-

complement mixture was created by diluting guinea pig

complement (Rockland Immunochemicals, Gilbertsville, PA) 1:50

in complete DMEM and adding HSV-2 MS to a concentration of

3,500 pfu per ml. The HSV-2 neutralization assay was initiated by

combining 50 ml of the virus-complement mixture with each serum

dilution (50 ml) and incubating at 37uC. After 2 hours, 100 ml of a

suspension containing 46106 Vero cells per ml was added to each

well, and microtiter plates were incubated for 48 hours to allow

HSV-2 plaques to form. Cell monolayers were fixed and stained

with a 20% methanol, 0.1% crystal violet solution. The HSV-2

neutralizing titer of each serum sample was considered to be the

reciprocal of the largest serum dilution that reduced HSV-2’s

cytopathic effect in Vero cell monolayers by at least 50%.

iii. Mouse antiserum-staining of HSV-2 plaques. Vero cell

monolayers were seeded in 12-well plates at a density of 56106 Vero

cells and were inoculated 4 hours later with 40 pfu per well of HSV-2

MS. At 32 hours p.i., Vero cell monolayers containing well-spaced

HSV-2 plaques were fixed for 20 minutes with a 2% formaldehyde-

2% sucrose solution and were permeabilized for 10 minutes with

90% methanol. HSV-1 Fc-c receptors (glycoprotein E-I

heterodimers; [89]) and non-specific-binding sites were blocked

with PBS containing 0.5% fetal bovine serum and 10 mg per ml each

of human c-globulin, donkey c-globulin, and goat c-globulin (PBS-F-

Ig). Fixed monolayers containing HSV-2 plaques were incubated for

6 hours with a 1:5,000 dilution of mouse antiserum, excess antibody

was removed with two rinses, and cells were incubated for 2 hours in

a 1:1,000 dilution of Alexa Fluor 594-conjugated goat antibody

specific for the Fc region of mouse IgG (Molecular Probes, Eugene,

OR). Excess secondary antibody was removed by two rinses, and cells

were photographed using a TE2000 inverted fluorescent microscope

(Nikon Instruments, Lewisville, TX) and DP72 digital camera

(Olympus America Inc., Center Valley, PA).

iv. Flow cytometric measurement of pan-HSV-2 IgG

antibody levels. Five 100 mm dishes of HSV-2 infected cells

were harvested 18 hours after inoculation with 2.5 pfu per cell.

Cells were trypsinized, resuspended in PBS+0.5% FBS (PBS-F),

centrifuged, and resuspended in 2% formaldehyde+2% sucrose for

20 minutes. Fixed cells were centrifuged, resuspended in 90%

methanol for 10 minutes, centrifuged, and resuspended in PBS-F.

Five dishes of uninfected Vero cells were identically processed in

parallel. Suspensions of fixed and permeabilized cells were passed

through 25 gauge needles to disperse cells into a uniform, single-

cell suspension. Cells were brought to a concentration of 5.66106

cells per ml in PBS-F-Ig block solution, and 90 ml aliquots of

uninfected or virus-infected cells were placed in a matched pair of

tubes containing 10 ml of each 1:500 dilution of pre-absorbed

mouse antiserum (i.e., 1:500 diluted serum was incubated

overnight with 0.56106 uninfected Vero cells). After a 6-hour
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incubation with 1:5,000-diluted mouse serum, cells were

centrifuged and rinsed twice with PBS-F to remove excess

mouse serum, and were then incubated with a 1:2,000 dilution

of allophycocyanin-conjugated goat antibody specific for the Fc

region of mouse IgG (Jackson Immunoresearch Laboratories, Inc.,

West Grove, PA). After 1 hour, excess secondary antibody was

removed by centrifugation and two rinses with PBS-F. Labeled

cells were analyzed in an Accuri C6 flow cytometer (Accuri

Cytometers, Inc., Ann Arbor, MI) using CFlow software (Accuri

Cytometers Inc.). Background fluorescence was defined as the

average mean fluorescent intensity (MFI) observed in uninfected

cell suspensions incubated with naı̈ve serum. The relative

abundance of pan-HSV-2 IgG in serum was calculated as,

(MFI HSV-2 cells2MFI UI cells)4background (Fig. S4).

In the process of developing the flow cytometry-based assay, a

panel of 12 representative mouse serum samples was tested on 4

independent occasions. Within each of these serum samples, the

absolute estimate of pan-HSV-2 IgG abundance varied by an

average 30% between independent trials. However, the rank-order

of pan-HSV-2 IgG abundance was invariant among the 12

samples between independent trials.

In vivo imaging of HSV-2 MS-GFP and HSV-2 MS-
luciferase infections

i. HSV-2 MS-GFP challenge experiments. Fluorescent

photographs of the eyes and faces of mice inoculated with

100,000 pfu per eye of HSV-2 MS-GFP was visualized using a

TE2000 inverted fluorescent microscope (Nikon Instruments)

fitted with a DP72 digital camera (Olympus America). Mice

were anesthetized by i.p. administration of xylazine (6.6 mg/kg)

and ketamine (100 mg/kg) and placed face on a clear petri dish.

Photographs of the left side of mouse faces were obtained by

capturing 20 to 30 photographs with a 26objective that spanned

the face, and merging individual images using the photomerge

feature of Photoshop CS3 software (Adobe Systems Incorporated,

San Jose, CA).

ii. HSV-2 MS-luciferase challenge experiments. Luciferase

expression in mice inoculated with 100,000 pfu per eye or

500,000 pfu per vagina of HSV-2 MS-luciferase was visualized

using an IVISH Lumina II bioluminescent imager (Caliper

Instruments, Hopkinton, MA). Mice were anesthetized by i.p.

administration of xylazine (6.6 mg/kg) and ketamine (100 mg/kg),

injected with 3 mg D-luciferin substrate (Gold BioTechnology, Inc.,

St. Louis, MO), positioned inside the instrument, and a 120-second

exposure was captured. Longer and shorter exposures between 30

and 300 seconds were tested, but these had no significant effect on the

relative differences between groups. Images were manipulated in

Living Image v3.1 software (Caliper Instruments), and were scaled in

a manner different than the default settings, specified as follows: 1.
binning (a signal : noise manipulation) was eliminated by setting to a

value of ‘1;’ 2. colored representations of light emissions were set to a

logarithmic scale which allows visualization of the entire range of light

emissions detected by the instrument; and 3. the upper and lower

limits of the scale were always set to the same boundaries (1 to 1000)

such that the graphic representations of results were comparable

between tests. Finally, quantitation of light emission from HSV-2

MS-luciferase-challenged animals was calculated within the Living

Image v3.1 program (Figures 6B and 6D) by copying identically-sized

‘‘region of interest’’ boxes between Day 2, 4, and 6 measurements of

all experiments at the conclusion of the study.

Mathematical and statistical analysis of results
Viral titers were transformed by adding a value of 1 such that all

data could be analyzed on a logarithmic scale. The significance of

differences between multiple treatment groups was compared by

one-way analysis of variance (ANOVA) followed by Tukey’s post

hoc t-test. The data that was graphed and statistically compared

were the logarithms of i. HSV-2 shedding (e.g., pfu per vagina), ii.
gD-specific IgG abundance, iii. neutralizing antibody titer, iv.
pan-HSV-2 IgG levels. or v. luciferase activity (light emission) The

correlation (goodness-of-fit) between pan-HSV-2 antibody levels

and reductions in vaginal shedding following HSV-2 MS challenge

was evaluated by regression analysis. The significance of

differences in survival frequency between immunization groups

was determined by Fisher’s Exact Test. The significance of

differences in 0DNLS- versus gD-2-immunized mice was com-

pared by a two-sided, paired t-test for the following measurements:

i. reductions in HSV-2 vaginal shedding (Fig. 4C); ii. pan-HSV-2

IgG levels (Fig. 5C); iii. reductions in luciferase activity (Fig. 6).

The significance of differences in percent survival following HSV-

2 MS challenge of 0DNLS-immunized mice and gD-2-immunized

mice was compared by a two-sided Student’s t-test. Statistical

analyses were performed using Instat v3.0 software (Graphpad

Software, La Jolla, CA) and Microsoft Excel. The quantitative

relationship between color development in ELISA and abundance

of gD-specific IgG antibody was defined by a hyperbolic tangent-

based standard curve of the form x = x50+DX N arctan
OD405{y50

DY

� �
, as described elsewhere [52,90].

Supporting Information

Figure S1 Shedding of HSV-2 MS and 0DNLS from the
site of inoculation. (A) HSV-2 shedding from the vaginas of

mice on Days 2 and 4 p.i. with 500,000 pfu per vagina of wild-type

HSV-2 MS or 0DNLS. (B) HSV-2 shedding from the eyes of mice

on Days 2 and 4 p.i. with 100,000 pfu per eye of HSV-2 MS or

0DNLS. A single asterisk (*) denotes p,0.05 and a double asterisk

(**) denotes p,0.001 that titers of HSV-2 0DNLS shed from the

vagina or eyes were equivalent to titers shed at the same site on the

same day by mice inoculated with HSV-2 MS.

(TIF)

Figure S2 Mice immunized with HSV-2 0DNLS are
resistant to HSV-2 ocular challenge. On Day 56 p.i.,

HSV-2 0DNLS- and MS-immunized mice were challenged with

100,000 pfu per eye of HSV-2 MS. (A) HSV-2 shedding from the

eyes between Days 1 and 3 post-challenge in naı̈ve mice (n = 10)

versus mice inoculated in the rear footpads with HSV-2 0DNLS

(n = 5). (B) HSV-2 shedding from the eyes of naı̈ve mice versus

mice inoculated in the eyes, nose, or vagina with HSV-2 0DNLS

(n = 5 per group). A single asterisk (*) denotes p,0.05 and a

double asterisk (**) denotes p,0.001 that HSV-2 shedding was

equivalent to naı̈ve controls on that day. (C) Survival frequency of

naı̈ve mice (n = 10) versus immunized mice (n = 5 per group) one

month after HSV-2 challenge of the eyes. A double asterisk (**)

denotes p,0.001 that survival frequency was equivalent to naı̈ve

mice.

(TIF)

Figure S3 Resistance of naı̈ve versus immunized mice
to ocular HSV-2 infection. On Days 80, 90, or 100 p.i., mice

were challenged with 100,000 pfu per eye of HSV-2 MS (n = 5 per

group). The summated results from all three experiments are

presented in each panel (gn = 15 per group). (A) Ocular HSV-2

shedding between Days 1 and 7 post-challenge in naı̈ve mice

(medium-treated) versus mice immunized with gD-21-306t or HSV-

2 0DNLS. (B) Ocular HSV-2 shedding in naı̈ve mice versus mice
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immunized with GFP or HSV-2 MS. A single asterisk (*) denotes

p,0.05 and a double asterisk (**) denotes p,0.001 that HSV-2

shedding was equivalent to naı̈ve mice on that day. (C) Mean 6

sem reduction in HSV-2 shedding on Days 1–5 post-challenge

relative to the average titer of HSV-2 shed by naı̈ve mice on that

day (n = 605 per group). (D) Survival frequency over time

following HSV-2 MS challenge of the eyes. A double asterisk

(**) denotes p,0.001 that survival frequency was equivalent to

naı̈ve mice.

(TIF)

Figure S4 Flow cytometry measurement of serum levels
of pan-HSV-2 IgG. (A) Summary of procedure. The immuno-

fluorescent background of each serum dilution was defined as the

average of the mean fluorescent intensity (MFI) of uninfected cell

suspensions incubated with that dilution of naı̈ve serum. (B) Flow

cytometric analysis of 5-fold dilution series of antiserum samples

(n = 3 samples per dilution).

(TIF)

Figure S5 Description of HSV-2 MS-GFP and HSV-2 MS-
luciferase. (A) Schematic of CMV-GFP and CMV-luciferase

expression cassettes introduced into the non-essential LAT gene of

HSV-2 MS-GFP and MS-luciferase, respectively. These gene

expression cassettes replaced bases 119,359–119,530 of the LAT

promoter. (B) Southern blot analysis of NotI-digested plasmid

DNA (shown on left) or NotI-digested viral DNA (shown on right).

The plasmid pUC-HSV-2-LAT contains the wild-type LAT gene.

The plasmids pUC-DLAT-GFP and pUC-DLAT-luciferase were

the plasmid precursors of HSV-2 MS-GFP and HSV-2 MS-

luciferase, respectively. NotI-digested cellular DNA was derived

from Vero cells that were uninfected (UI) or were harvested

18 hours after inoculation with 2.5 pfu per cell of HSV-2 MS,

MS-GFP, or MS-luciferase. A LAT promoter-specific oligonucle-

otide (59-ccctgtgtcattgtttacgtggccgcgggccagcagacgg-39) was hybrid-

ized to Southern blots, which hybridized upstream of the PvuII –

BspEI deletion in the LAT gene, and which verified that the gene

expression cassettes in pUC-DLAT-GFP and pUC-DLAT-lucifer-

ase were transferred into the intended locus in the HSV-2 genome.

(TIF)

Figure S6 Spread of HSV-2 MS-GFP infection between
Days 1 and 7 after challenge of naı̈ve versus HSV-2
0DNLS-immunized mice. Progression of the spread of GFP

expression across the faces of naı̈ve and 0DNLS-immunized mice

challenged with 100,000 pfu per eye of HSV-2 MS-GFP, as

visualized on Days 1, 3, 5, and 7 post-challenge. These

experiments were performed on n = 3 mice per group, and the

progression of infection is shown in a single representative mouse

per group.

(TIF)

Table S1

(DOC)
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